644 research outputs found

    A Possibilistic and Probabilistic Approach to Precautionary Saving

    Full text link
    This paper proposes two mixed models to study a consumer's optimal saving in the presence of two types of risk.Comment: Panoeconomicus, 201

    Induction of Interpretable Possibilistic Logic Theories from Relational Data

    Full text link
    The field of Statistical Relational Learning (SRL) is concerned with learning probabilistic models from relational data. Learned SRL models are typically represented using some kind of weighted logical formulas, which make them considerably more interpretable than those obtained by e.g. neural networks. In practice, however, these models are often still difficult to interpret correctly, as they can contain many formulas that interact in non-trivial ways and weights do not always have an intuitive meaning. To address this, we propose a new SRL method which uses possibilistic logic to encode relational models. Learned models are then essentially stratified classical theories, which explicitly encode what can be derived with a given level of certainty. Compared to Markov Logic Networks (MLNs), our method is faster and produces considerably more interpretable models.Comment: Longer version of a paper appearing in IJCAI 201

    The Inflation Technique for Causal Inference with Latent Variables

    Full text link
    The problem of causal inference is to determine if a given probability distribution on observed variables is compatible with some causal structure. The difficult case is when the causal structure includes latent variables. We here introduce the inflation technique\textit{inflation technique} for tackling this problem. An inflation of a causal structure is a new causal structure that can contain multiple copies of each of the original variables, but where the ancestry of each copy mirrors that of the original. To every distribution of the observed variables that is compatible with the original causal structure, we assign a family of marginal distributions on certain subsets of the copies that are compatible with the inflated causal structure. It follows that compatibility constraints for the inflation can be translated into compatibility constraints for the original causal structure. Even if the constraints at the level of inflation are weak, such as observable statistical independences implied by disjoint causal ancestry, the translated constraints can be strong. We apply this method to derive new inequalities whose violation by a distribution witnesses that distribution's incompatibility with the causal structure (of which Bell inequalities and Pearl's instrumental inequality are prominent examples). We describe an algorithm for deriving all such inequalities for the original causal structure that follow from ancestral independences in the inflation. For three observed binary variables with pairwise common causes, it yields inequalities that are stronger in at least some aspects than those obtainable by existing methods. We also describe an algorithm that derives a weaker set of inequalities but is more efficient. Finally, we discuss which inflations are such that the inequalities one obtains from them remain valid even for quantum (and post-quantum) generalizations of the notion of a causal model.Comment: Minor final corrections, updated to match the published version as closely as possibl

    Valid and efficient imprecise-probabilistic inference with partial priors, III. Marginalization

    Full text link
    As Basu (1977) writes, "Eliminating nuisance parameters from a model is universally recognized as a major problem of statistics," but after more than 50 years since Basu wrote these words, the two mainstream schools of thought in statistics have yet to solve the problem. Fortunately, the two mainstream frameworks aren't the only options. This series of papers rigorously develops a new and very general inferential model (IM) framework for imprecise-probabilistic statistical inference that is provably valid and efficient, while simultaneously accommodating incomplete or partial prior information about the relevant unknowns when it's available. The present paper, Part III in the series, tackles the marginal inference problem. Part II showed that, for parametric models, the likelihood function naturally plays a central role and, here, when nuisance parameters are present, the same principles suggest that the profile likelihood is the key player. When the likelihood factors nicely, so that the interest and nuisance parameters are perfectly separated, the valid and efficient profile-based marginal IM solution is immediate. But even when the likelihood doesn't factor nicely, the same profile-based solution remains valid and leads to efficiency gains. This is demonstrated in several examples, including the famous Behrens--Fisher and gamma mean problems, where I claim the proposed IM solution is the best solution available. Remarkably, the same profiling-based construction offers validity guarantees in the prediction and non-parametric inference problems. Finally, I show how a broader view of this new IM construction can handle non-parametric inference on risk minimizers and makes a connection between non-parametric IMs and conformal prediction.Comment: Follow-up to arXiv:2211.14567. Feedback welcome at https://researchers.one/articles/23.09.0000

    A possibilistic framework for constraint-based metabolic flux analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Constraint-based models allow the calculation of the metabolic flux states that can be exhibited by cells, standing out as a powerful analytical tool, but they do not determine which of these are likely to be existing under given circumstances. Typical methods to perform these predictions are (a) flux balance analysis, which is based on the assumption that cell behaviour is optimal, and (b) metabolic flux analysis, which combines the model with experimental measurements.</p> <p>Results</p> <p>Herein we discuss a possibilistic framework to perform metabolic flux estimations using a constraint-based model and a set of measurements. The methodology is able to handle inconsistencies, by considering sensors errors and model imprecision, to provide rich and reliable flux estimations. The methodology can be cast as linear programming problems, able to handle thousands of variables with efficiency, so it is suitable to deal with large-scale networks. Moreover, the possibilistic estimation does not attempt necessarily to predict the actual fluxes with precision, but rather to exploit the available data – even if those are scarce – to distinguish possible from impossible flux states in a gradual way.</p> <p>Conclusion</p> <p>We introduce a possibilistic framework for the estimation of metabolic fluxes, which is shown to be flexible, reliable, usable in scenarios lacking data and computationally efficient.</p
    • …
    corecore