1,073 research outputs found

    Optimal, Multi-Modal Control with Applications in Robotics

    Get PDF
    The objective of this dissertation is to incorporate the concept of optimality to multi-modal control and apply the theoretical results to obtain successful navigation strategies for autonomous mobile robots. The main idea in multi-modal control is to breakup a complex control task into simpler tasks. In particular, number of control modes are constructed, each with respect to a particular task, and these modes are combined according to some supervisory control logic in order to complete the overall control task. This way of modularizing the control task lends itself particularly well to the control of autonomous mobile robot, as evidenced by the success of behavior-based robotics. Many challenging and interesting research issues arise when employing multi-modal control. This thesis aims to address these issues within an optimal control framework. In particular, the contributions of this dissertation are as follows: We first addressed the problem of inferring global behaviors from a collection of local rules (i.e., feedback control laws). Next, we addressed the issue of adaptively varying the multi-modal control system to further improve performance. Inspired by adaptive multi-modal control, we presented a constructivist framework for the learning from example problem. This framework was applied to the DARPA sponsored Learning Applied to Ground Robots (LAGR) project. Next, we addressed the optimal control of multi-modal systems with infinite dimensional constraints. These constraints are formulated as multi-modal, multi-dimensional (M3D) systems, where the dimensions of the state and control spaces change between modes to account for the constraints, to ease the computational burdens associated with traditional methods. Finally, we used multi-modal control strategies to develop effective navigation strategies for autonomous mobile robots. The theoretical results presented in this thesis are verified by conducting simulated experiments using Matlab and actual experiments using the Magellan Pro robot platform and the LAGR robot. In closing, the main strength of multi-modal control lies in breaking up complex control task into simpler tasks. This divide-and-conquer approach helps modularize the control system. This has the same effect on complex control systems that object-oriented programming has for large-scale computer programs, namely it allows greater simplicity, flexibility, and adaptability.Ph.D.Committee Chair: Egerstedt, Magnus; Committee Member: Ferri, Bonnie; Committee Member: Lee, Chin-Hui; Committee Member: Reveliotis, Spyros; Committee Member: Yezzi, Anthon

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency
    • …
    corecore