391 research outputs found

    A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms

    Full text link
    [EN] Partial evaluation is a powerful and general program optimization technique with many successful applications. Existing PE schemes do not apply to expressive rule-based languages like Maude, CafeOBJ, OBJ, ASF+SDF, and ELAN, which support: 1) rich type structures with sorts, subsorts, and overloading; and 2) equational rewriting modulo various combinations of axioms such as associativity, commutativity, and identity. In this paper, we develop the new foundations needed and illustrate the key concepts by showing how they apply to partial evaluation of expressive programs written in Maude. Our partial evaluation scheme is based on an automatic unfolding algorithm that computes term variants and relies on high-performance order-sorted equational least general generalization and order-sorted equational homeomorphic embedding algorithms for ensuring termination. We show that our partial evaluation technique is sound and complete for convergent rewrite theories that may contain various combinations of associativity, commutativity, and/or identity axioms for different binary operators. We demonstrate the effectiveness of Maude's automatic partial evaluator, Victoria, on several examples where it shows significant speed-ups. (C) 2019 Elsevier Inc. All rights reserved.This work has been partially supported by the EU (FEDER) and the Spanish MCIU under grant RTI2018-094403-B-C32, by Generalitat Valenciana under grant PROMETEO/2019/098, and by NRL under contract number N00173-17-1-G002. Angel Cuenca-Ortega has been supported by the SENESCYT, Ecuador (scholarship program 2013).Alpuente Frasnedo, M.; Cuenca-Ortega, AE.; Escobar Román, S.; Meseguer, J. (2020). A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms. Journal of Logical and Algebraic Methods in Programming. 110:1-36. https://doi.org/10.1016/j.jlamp.2019.100501S13611

    Narrowing-based Optimization of Rewrite Theories

    Full text link
    Partial evaluation has been never investigated in the context of rewrite theories that allow concurrent systems to be specified by means of rules, with an underlying equational theory being used to model system states as terms of an algebraic data type. In this paper, we develop a symbolic, narrowing-driven partial evaluation framework for rewrite theories that supports sorts, subsort overloading, rules, equations, and algebraic axioms. Our partial evaluation scheme allows a rewrite theory to be optimized by specializing the plugged equational theory with respect to the rewrite rules that define the system dynamics. This can be particularly useful for automatically optimizing rewrite theories that contain overly general equational theories which perform unnecessary computations involving matching modulo axioms, because some of the axioms may be blown away after the transformation. The specialization is done by using appropriate unfolding and abstraction algorithms that achieve significant specialization while ensuring the correctness and termination of the specialization. Our preliminary results demonstrate that our transformation can speed up a number of benchmarks that are difficult to optimize otherwise.This work has been partially supported by the EU (FEDER) and the Spanish MCIU under grant RTI2018094403-B-C32,andbyGeneralitatValencianaundergrantPROMETEO/2019/098. JuliaSapiñahasbeensupported by the Generalitat Valenciana APOSTD/2019/127 grantAlpuente Frasnedo, M.; Ballis, D.; Escobar Román, S.; Sapiña Sanchis, J. (2020). Narrowing-based Optimization of Rewrite Theories. Universitat Politècnica de València. http://hdl.handle.net/10251/14557

    Methods for Proving Termination of Rewriting-based Programming Languages by Transformation

    Get PDF
    AbstractDespite the remarkable development of the theory of termination of rewriting, its application to high-level (rewriting-based) programming languages is far from being optimal. This is due to the need for features such as conditional equations and rules, types and subtypes, (possibly programmable) strategies for controlling the execution, matching modulo axioms, and so on, that are used in many programs and tend to place such programs outside the scope of current termination tools. The operational meaning of such features is often formalized in a proof theoretic manner by means of an inference system rather than just by a rewriting relation. The corresponding termination notions can also differ from the standard ones. During the last years we have introduced and implemented different notions and transformation techniques which have been proved useful for proving and disproving termination of such programs by using existing tools for proving termination of (variants of) rewriting. In this paper we provide an overview of our main contributions

    Programming and symbolic computation in Maude

    Full text link
    [EN] Rewriting logic is both a flexible semantic framework within which widely different concurrent systems can be naturally specified and a logical framework in which widely different logics can be specified. Maude programs are exactly rewrite theories. Maude has also a formal environment of verification tools. Symbolic computation is a powerful technique for reasoning about the correctness of concurrent systems and for increasing the power of formal tools. We present several new symbolic features of Maude that enhance formal reasoning about Maude programs and the effectiveness of formal tools. They include: (i) very general unification modulo user-definable equational theories, and (ii) symbolic reachability analysis of concurrent systems using narrowing. The paper does not focus just on symbolic features: it also describes several other new Maude features, including: (iii) Maude's strategy language for controlling rewriting, and (iv) external objects that allow flexible interaction of Maude object-based concurrent systems with the external world. In particular, meta-interpreters are external objects encapsulating Maude interpreters that can interact with many other objects. To make the paper self-contained and give a reasonably complete language overview, we also review the basic Maude features for equational rewriting and rewriting with rules, Maude programming of concurrent object systems, and reflection. Furthermore, we include many examples illustrating all the Maude notions and features described in the paper.Duran has been partially supported by MINECO/FEDER project TIN2014-52034-R. Escobar has been partially supported by the EU (FEDER) and the MCIU under grant RTI2018-094403-B-C32, by the Spanish Generalitat Valenciana under grant PROMETE0/2019/098, and by the US Air Force Office of Scientific Research under award number FA9550-17-1-0286. MartiOliet and Rubio have been partially supported by MCIU Spanish project TRACES (TIN2015-67522-C3-3-R). Rubio has also been partially supported by a MCIU grant FPU17/02319. Meseguer and Talcott have been partially supported by NRL Grant N00173 -17-1-G002. Talcott has also been partially supported by ONR Grant N00014-15-1-2202.Durán, F.; Eker, S.; Escobar Román, S.; NARCISO MARTÍ OLIET; José Meseguer; Rubén Rubio; Talcott, C. (2020). Programming and symbolic computation in Maude. Journal of Logical and Algebraic Methods in Programming. 110:1-58. https://doi.org/10.1016/j.jlamp.2019.100497S158110Alpuente, M., Escobar, S., Espert, J., & Meseguer, J. (2014). A modular order-sorted equational generalization algorithm. Information and Computation, 235, 98-136. doi:10.1016/j.ic.2014.01.006K. Bae, J. Meseguer, Predicate abstraction of rewrite theories, in: [36], 2014, pp. 61–76.Bae, K., & Meseguer, J. (2015). Model checking linear temporal logic of rewriting formulas under localized fairness. Science of Computer Programming, 99, 193-234. doi:10.1016/j.scico.2014.02.006Bae, K., Meseguer, J., & Ölveczky, P. C. (2014). Formal patterns for multirate distributed real-time systems. Science of Computer Programming, 91, 3-44. doi:10.1016/j.scico.2013.09.010P. Borovanský, C. Kirchner, H. Kirchner, P.E. Moreau, C. Ringeissen, An overview of ELAN, in: [77], 1998, pp. 55–70.Bouhoula, A., Jouannaud, J.-P., & Meseguer, J. (2000). Specification and proof in membership equational logic. Theoretical Computer Science, 236(1-2), 35-132. doi:10.1016/s0304-3975(99)00206-6Bravenboer, M., Kalleberg, K. T., Vermaas, R., & Visser, E. (2008). Stratego/XT 0.17. A language and toolset for program transformation. Science of Computer Programming, 72(1-2), 52-70. doi:10.1016/j.scico.2007.11.003Bruni, R., & Meseguer, J. (2006). Semantic foundations for generalized rewrite theories. Theoretical Computer Science, 360(1-3), 386-414. doi:10.1016/j.tcs.2006.04.012M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Martí-Oliet, C.L. Talcott, Two decades of Maude, in: [86], 2015, pp. 232–254.Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., & Quesada, J. F. (2002). Maude: specification and programming in rewriting logic. Theoretical Computer Science, 285(2), 187-243. doi:10.1016/s0304-3975(01)00359-0Clavel, M., & Meseguer, J. (2002). Reflection in conditional rewriting logic. Theoretical Computer Science, 285(2), 245-288. doi:10.1016/s0304-3975(01)00360-7F. Durán, S. Eker, S. Escobar, N. Martí-Oliet, J. Meseguer, C.L. Talcott, Associative unification and symbolic reasoning modulo associativity in Maude, in: [121], 2018, pp. 98–114.Durán, F., Lucas, S., Marché, C., Meseguer, J., & Urbain, X. (2008). Proving operational termination of membership equational programs. Higher-Order and Symbolic Computation, 21(1-2), 59-88. doi:10.1007/s10990-008-9028-2F. Durán, J. Meseguer, An extensible module algebra for Maude, in: [77], 1998, pp. 174–195.Durán, F., & Meseguer, J. (2003). Structured theories and institutions. Theoretical Computer Science, 309(1-3), 357-380. doi:10.1016/s0304-3975(03)00312-8Durán, F., & Meseguer, J. (2007). Maude’s module algebra. Science of Computer Programming, 66(2), 125-153. doi:10.1016/j.scico.2006.07.002Durán, F., & Meseguer, J. (2012). On the Church-Rosser and coherence properties of conditional order-sorted rewrite theories. The Journal of Logic and Algebraic Programming, 81(7-8), 816-850. doi:10.1016/j.jlap.2011.12.004F. Durán, P.C. Ölveczky, A guide to extending Full Maude illustrated with the implementation of Real-Time Maude, in: [116], 2009, pp. 83–102.S. Escobar, Multi-paradigm programming in Maude, in: [121], 2018, pp. 26–44.Escobar, S., Meadows, C., Meseguer, J., & Santiago, S. (2014). State space reduction in the Maude-NRL Protocol Analyzer. Information and Computation, 238, 157-186. doi:10.1016/j.ic.2014.07.007Escobar, S., Sasse, R., & Meseguer, J. (2012). Folding variant narrowing and optimal variant termination. The Journal of Logic and Algebraic Programming, 81(7-8), 898-928. doi:10.1016/j.jlap.2012.01.002H. Garavel, M. Tabikh, I. Arrada, Benchmarking implementations of term rewriting and pattern matching in algebraic, functional, and object-oriented languages – the 4th rewrite engines competition, in: [121], 2018, pp. 1–25.Goguen, J. A., & Burstall, R. M. (1992). Institutions: abstract model theory for specification and programming. Journal of the ACM, 39(1), 95-146. doi:10.1145/147508.147524Goguen, J. A., & Meseguer, J. (1984). Equality, types, modules, and (why not?) generics for logic programming. The Journal of Logic Programming, 1(2), 179-210. doi:10.1016/0743-1066(84)90004-9Goguen, J. A., & Meseguer, J. (1992). Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theoretical Computer Science, 105(2), 217-273. doi:10.1016/0304-3975(92)90302-vR. Gutiérrez, J. Meseguer, Variant-based decidable satisfiability in initial algebras with predicates, in: [61], 2018, pp. 306–322.Gutiérrez, R., Meseguer, J., & Rocha, C. (2015). Order-sorted equality enrichments modulo axioms. Science of Computer Programming, 99, 235-261. doi:10.1016/j.scico.2014.07.003Horn, A. (1951). On sentences which are true of direct unions of algebras. Journal of Symbolic Logic, 16(1), 14-21. doi:10.2307/2268661Katelman, M., Keller, S., & Meseguer, J. (2012). Rewriting semantics of production rule sets. The Journal of Logic and Algebraic Programming, 81(7-8), 929-956. doi:10.1016/j.jlap.2012.06.002Kowalski, R. (1979). Algorithm = logic + control. Communications of the ACM, 22(7), 424-436. doi:10.1145/359131.359136Lucanu, D., Rusu, V., & Arusoaie, A. (2017). A generic framework for symbolic execution: A coinductive approach. Journal of Symbolic Computation, 80, 125-163. doi:10.1016/j.jsc.2016.07.012D. Lucanu, V. Rusu, A. Arusoaie, D. Nowak, Verifying reachability-logic properties on rewriting-logic specifications, in: [86], 2015, pp. 451–474.Lucas, S., & Meseguer, J. (2016). Normal forms and normal theories in conditional rewriting. Journal of Logical and Algebraic Methods in Programming, 85(1), 67-97. doi:10.1016/j.jlamp.2015.06.001N. Martí-Oliet, J. Meseguer, A. Verdejo, A rewriting semantics for Maude strategies, in: [116], 2009, pp. 227–247.Martí-Oliet, N., Palomino, M., & Verdejo, A. (2007). Strategies and simulations in a semantic framework. Journal of Algorithms, 62(3-4), 95-116. doi:10.1016/j.jalgor.2007.04.002Meseguer, J. (1992). Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Science, 96(1), 73-155. doi:10.1016/0304-3975(92)90182-fMeseguer, J. (2012). Twenty years of rewriting logic. The Journal of Logic and Algebraic Programming, 81(7-8), 721-781. doi:10.1016/j.jlap.2012.06.003Meseguer, J. (2017). Strict coherence of conditional rewriting modulo axioms. Theoretical Computer Science, 672, 1-35. doi:10.1016/j.tcs.2016.12.026J. Meseguer, Generalized rewrite theories and coherence completion, in: [121], 2018, pp. 164–183.Meseguer, J. (2018). Variant-based satisfiability in initial algebras. Science of Computer Programming, 154, 3-41. doi:10.1016/j.scico.2017.09.001Meseguer, J., Goguen, J. A., & Smolka, G. (1989). Order-sorted unification. Journal of Symbolic Computation, 8(4), 383-413. doi:10.1016/s0747-7171(89)80036-7Meseguer, J., & Ölveczky, P. C. (2012). Formalization and correctness of the PALS architectural pattern for distributed real-time systems. Theoretical Computer Science, 451, 1-37. doi:10.1016/j.tcs.2012.05.040Meseguer, J., Palomino, M., & Martí-Oliet, N. (2008). Equational abstractions. Theoretical Computer Science, 403(2-3), 239-264. doi:10.1016/j.tcs.2008.04.040Meseguer, J., & Roşu, G. (2007). The rewriting logic semantics project. Theoretical Computer Science, 373(3), 213-237. doi:10.1016/j.tcs.2006.12.018Meseguer, J., & Roşu, G. (2013). The rewriting logic semantics project: A progress report. Information and Computation, 231, 38-69. doi:10.1016/j.ic.2013.08.004Meseguer, J., & Skeirik, S. (2017). Equational formulas and pattern operations in initial order-sorted algebras. Formal Aspects of Computing, 29(3), 423-452. doi:10.1007/s00165-017-0415-5Meseguer, J., & Thati, P. (2007). Symbolic reachability analysis using narrowing and its application to verification of cryptographic protocols. Higher-Order and Symbolic Computation, 20(1-2), 123-160. doi:10.1007/s10990-007-9000-6C. Olarte, E. Pimentel, C. Rocha, Proving structural properties of sequent systems in rewriting logic, in: [121], 2018, pp. 115–135.Ölveczky, P. C., & Meseguer, J. (2007). Semantics and pragmatics of Real-Time Maude. Higher-Order and Symbolic Computation, 20(1-2), 161-196. doi:10.1007/s10990-007-9001-5Ölveczky, P. C., & Thorvaldsen, S. (2009). Formal modeling, performance estimation, and model checking of wireless sensor network algorithms in Real-Time Maude. Theoretical Computer Science, 410(2-3), 254-280. doi:10.1016/j.tcs.2008.09.022Rocha, C., Meseguer, J., & Muñoz, C. (2017). Rewriting modulo SMT and open system analysis. Journal of Logical and Algebraic Methods in Programming, 86(1), 269-297. doi:10.1016/j.jlamp.2016.10.001Şerbănuţă, T. F., Roşu, G., & Meseguer, J. (2009). A rewriting logic approach to operational semantics. Information and Computation, 207(2), 305-340. doi:10.1016/j.ic.2008.03.026Skeirik, S., & Meseguer, J. (2018). Metalevel algorithms for variant satisfiability. Journal of Logical and Algebraic Methods in Programming, 96, 81-110. doi:10.1016/j.jlamp.2017.12.006S. Skeirik, A. Ştefănescu, J. Meseguer, A constructor-based reachability logic for rewrite theories, in: [61], 2018, pp. 201–217.Strachey, C. (2000). Higher-Order and Symbolic Computation, 13(1/2), 11-49. doi:10.1023/a:1010000313106A. Ştefănescu, S. Ciobâcă, R. Mereuta, B.M. Moore, T. Serbanuta, G. Roşu, All-path reachability logic, in: [36], 2014, pp. 425–440.Tushkanova, E., Giorgetti, A., Ringeissen, C., & Kouchnarenko, O. (2015). A rule-based system for automatic decidability and combinability. Science of Computer Programming, 99, 3-23. doi:10.1016/j.scico.2014.02.00

    Order-sorted Homeomorphic Embedding modulo Combinations of Associativity and/or Commutativity Axioms

    Full text link
    [EN] The Homeomorphic Embedding relation has been amply used for defining termination criteria of symbolic methods for program analysis, transformation, and verification. However, homeomorphic embedding has never been investigated in the context of order-sorted rewrite theories that support symbolic execution methods modulo equational axioms. This paper generalizes the symbolic homeomorphic embedding relation to order-sorted rewrite theories that may contain various combinations of associativity and/or commutativity axioms for different binary operators. We systematically measure the performance of different, increasingly efficient formulations of the homeomorphic embedding relation modulo axioms that we implement in Maude. Our experimental results show that the most efficient version indeed pays off in practice.M. Alpuente and S. Escobar have been partially supported by the EU (FEDER) and the Spanish MCIU under grant RTI2018-094403-B-C32, by the Spanish Generalitat Valenciana under grant PROMETEO/2019/098, and by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 952215 (TAILOR). J. Meseguer has been supported by NRL under contract number N00173-17-1-G002. A. Cuenca-Ortega has been supported by the SENESCYT, Ecuador (scholarship program 2013).Alpuente Frasnedo, M.; Cuenca-Ortega, A.; Escobar Román, S.; Meseguer, J. (2020). Order-sorted Homeomorphic Embedding modulo Combinations of Associativity and/or Commutativity Axioms. Fundamenta Informaticae. 177(3-4):297-329. https://doi.org/10.3233/FI-2020-1991S2973291773-

    ACUOS: A System for Order-Sorted Modular ACU Generalization

    Full text link
    [ES] La generalización, también denominada anti-unificación, es la operación dual de la unificación. Dados dos términos t y t' , un generalizador es un término t'' del cual t y t' son instancias de sustitución. El concepto dual del unificador más general (mgu) es el de generalizador menos general (lgg). En esta tesina extendemos el conocido algoritmo de generalización sin tipos a, primero, una configuración order-sorted con sorts, subsorts y polimorfismo de subtipado; en segundo lugar, la extendemos para soportar generalización módulo teorías ecuacionales, donde los símbolos de función pueden obedecer cualquier combinación de axiomas de asociatividad, conmutatividad e identidad (incluyendo el conjunto vacío de dichos axiomas); y, en tercer lugar, a la combinación de ambos, que resulta en un algoritmo modular de generalización order-sorted ecuacional. A diferencia de las configuraciones sin tipos, en nuestro marco teórico en general el lgg no es único, lo que se debe tanto al tipado como a los axiomas ecuacionales. En su lugar, existe un conjunto finito y mínimo de lggs, tales que cualquier otra generalización tiene a alguno de ellos como instancia. Nuestros algoritmos de generalización se expresan mediante reglas de inferencia para las cuales damos demostraciones de corrección. Ello abre la puerta a nuevas aplicaciones en campos como la evaluación parcial, la síntesis de programas, la minería de datos y la demostración de teoremas para sistemas de razonamiento ecuacional y lenguajes tipados basados en reglas tales como ASD+SDF, Elan, OBJ, CafeOBJ y Maude. Esta tesis también describe una herramienta para el cómputo automatizado de los generalizadores de un conjunto dado de estructuras en un lenguaje tipado módulo un conjunto de axiomas dado. Al soportar la combinación modular de atributos ecuacionales de asociatividad, conmutatividad y existencia de elemento neutro (ACU) para símbolos de función arbitrarios, la generalización ACU modular aporta suficiente poder expresivo a la generalización ordinaria para razonar sobre estructuras de datos tipadas tales como listas, conjuntos y multiconjuntos. La técnica ha sido implementada con generalidad y eficiencia en el sistema ACUOS y puede ser fácilmente integrada con software de terceros.[EN] Generalization, also called anti-uni cation, is the dual of uni cation. Given terms t and t 0 , a generalization is a term t 00 of which t and t 0 are substitution instances. The dual of a most general uni er (mgu) is that of least general generalization (lgg). In this thesis, we extend the known untyped generalization algorithm to, rst, an order-sorted typed setting with sorts, subsorts, and subtype polymorphism; second, we extend it to work modulo equational theories, where function symbols can obey any combination of associativity, commutativity, and identity axioms (includ- ing the empty set of such axioms); and third, to the combination of both, which results in a modular, order-sorted equational generalization algo- rithm. Unlike the untyped case, there is in general no single lgg in our framework, due to order-sortedness or to the equational axioms. Instead, there is a nite, minimal set of lggs, so that any other generalization has at least one of them as an instance. Our generalization algorithms are expressed by means of inference systems for which we give proofs of cor- rectness. This opens up new applications to partial evaluation, program synthesis, data mining, and theorem proving for typed equational rea- soning systems and typed rule-based languages such as ASF+SDF, Elan, OBJ, Cafe-OBJ, and Maude. This thesis also describes a tool for automatically computing the gen- eralizers of a given set of structures in a typed language modulo a set of axioms. By supporting the modular combination of associative, com- mutative and unity (ACU) equational attributes for arbitrary function symbols, modular ACU generalization adds enough expressive power to ordinary generalization to reason about typed data structures such as lists, sets and multisets. The ACU generalization technique has been generally and e ciently implemented in the ACUOS system and can be easily integrated with third-party software.Espert Real, J. (2012). ACUOS: A System for Order-Sorted Modular ACU Generalization. http://hdl.handle.net/10251/1921

    A Modular Order-sorted Equational Generalization Algorithm

    Full text link
    Generalization, also called anti-unification, is the dual of unification. Given terms t and t , a generalizer is a term t of which t and t are substitution instances. The dual of a most general unifier (mgu) is that of least general generalizer (lgg). In this work, we extend the known untyped generalization algorithm to, first, an order-sorted typed setting with sorts, subsorts, and subtype polymorphism; second, we extend it to work modulo equational theories, where function symbols can obey any combination of associativity, commutativity, and identity axioms (including the empty set of such axioms); and third, to the combination of both, which results in a modular, order-sorted equational generalization algorithm. Unlike the untyped case, there is in general no single lgg in our framework, due to order-sortedness or to the equational axioms. Instead, there is a finite, minimal and complete set of lggs, so that any other generalizer has at least one of them as an instance. Our generalization algorithms are expressed by means of inference systems for which we give proofs of correctness. This opens up new applications to partial evaluation, program synthesis, and theorem proving for typed equational reasoning systems and typed rulebased languages such as ASF+SDF, Elan, OBJ, Cafe-OBJ, and Maude. © 2014 Elsevier Inc. All rights reserved. 1.M. Alpuente, S. Escobar, and J. Espert have been partially supported by the EU (FEDER) and the Spanish MEC/MICINN under grant TIN 2010-21062-C02-02, and by Generalitat Valenciana PROMETEO2011/052. J. Meseguer has been supported by NSF Grants CNS 09-04749, and CCF 09-05584.Alpuente Frasnedo, M.; Escobar Román, S.; Espert Real, J.; Meseguer, J. (2014). A Modular Order-sorted Equational Generalization Algorithm. Information and Computation. 235:98-136. https://doi.org/10.1016/j.ic.2014.01.006S9813623

    On Unfolding Completeness for Rewriting Logic Theories

    Full text link
    Many transformation systems for program optimization, program synthesis, and program specialization are based on fold/unfold transformations. In this paper, we investigate the semantic properties of a narrowing-based unfolding transformation that is useful to transform rewriting logic theories. We also present a transformation methodology that is able to determine whether an unfolding transformation step would cause incompleteness and avoid this problem by completing the transformed rewrite theory with suitable extra rules. More precisely, our methodology identifies the sources of incompleteness and derives a set of rules that are added to the transformed rewrite theory in order to preserve the semantics of the original theory.Alpuente Frasnedo, M.; Baggi, M.; Ballis, D.; Falaschi, M. (2010). On Unfolding Completeness for Rewriting Logic Theories. http://hdl.handle.net/10251/863

    Inspecting Maude Variants with GLINTS

    Full text link
    [EN] This paper introduces GLINTS, a graphical tool for exploring variant narrowing computations in Maude. The most recent version of Maude, version 2.7.1, provides quite sophisticated unification features, including order-sorted equational unification for convergent theories modulo axioms such as associativity, commutativity, and identity. This novel equational unification relies on built-in generation of the set of variants of a term t, i.e., the canonical form of t sigma for a computed substitution sigma. Variant generation relies on a novel narrowing strategy called folding variant narrowing that opens up new applications in formal reasoning, theorem proving, testing, protocol analysis, and model checking, especially when the theory satisfies the finite variant property, i.e., there is a finite number of most general variants for every term in the theory. However, variant narrowing computations can be extremely involved and are simply presented in text format by Maude, often being too heavy to be debugged or even understood. The GLINTS system provides support for (i) determining whether a given theory satisfies the finite variant property, (ii) thoroughly exploring variant narrowing computations, (iii) automatic checking of node embedding and closedness modulo axioms, and (iv) querying and inspecting selected parts of the variant trees.This work has been partially supported by EU (FEDER) and Spanish MINECO grant TIN 2015-69175-C4-1-R and by Generalitat Valenciana PROMETEO-II/2015/013. Angel Cuenca-Ortega is supported by SENESCYT, Ecuador (scholarship program 2013), and Julia Sapina by FPI-UPV grant SP2013-0083. Santiago Escobar is supported by the Air Force Office of Scientific Research under award number FA9550-17-1-0286.Alpuente Frasnedo, M.; Cuenca-Ortega, A.; Escobar Román, S.; Sapiña-Sanchis, J. (2017). Inspecting Maude Variants with GLINTS. Theory and Practice of Logic Programming. 17(5-6):689-707. https://doi.org/10.1017/S147106841700031XS689707175-
    corecore