2,554 research outputs found

    COFS: COntrollable Furniture layout Synthesis

    Get PDF
    Realistic, scalable, and controllable generation of furniture layouts is essential for many applications in virtual reality, augmented reality, game development and synthetic data generation. The most successful current methods tackle this problem as a sequence generation problem which imposes a specific ordering on the elements of the layout, making it hard to exert fine-grained control over the attributes of a generated scene. Existing methods provide control through object-level conditioning, or scene completion, where generation can be conditioned on an arbitrary subset of furniture objects. However, attribute-level conditioning, where generation can be conditioned on an arbitrary subset of object attributes, is not supported. We propose COFS, a method to generate furniture layouts that enables fine-grained control through attribute-level conditioning. For example, COFS allows specifying only the scale and type of objects that should be placed in the scene and the generator chooses their positions and orientations; or the position that should be occupied by objects can be specified and the generator chooses their type, scale, orientation, etc. Our results show both qualitatively and quantitatively that we significantly outperform existing methods on attribute-level conditioning

    How many Observations are Enough? Knowledge Distillation for Trajectory Forecasting

    Get PDF
    Accurate prediction of future human positions is an essential task for modern video-surveillance systems. Current state-of-the-art models usually rely on a "history" of past tracked locations (e.g., 3 to 5 seconds) to predict a plausible sequence of future locations (e.g., up to the next 5 seconds). We feel that this common schema neglects critical traits of realistic applications: as the collection of input trajectories involves machine perception (i.e., detection and tracking), incorrect detection and fragmentation errors may accumulate in crowded scenes, leading to tracking drifts. On this account, the model would be fed with corrupted and noisy input data, thus fatally affecting its prediction performance.In this regard, we focus on delivering accurate predictions when only few input observations are used, thus potentially lowering the risks associated with automatic perception. To this end, we conceive a novel distillation strategy that allows a knowledge transfer from a teacher network to a student one, the latter fed with fewer observations (just two ones). We show that a properly defined teacher supervision allows a student network to perform comparably to state-of-the-art approaches that demand more observations. Besides, extensive experiments on common trajectory forecasting datasets highlight that our student network better generalizes to unseen scenarios
    • …
    corecore