812 research outputs found

    H_2-Optimal Decentralized Control over Posets: A State-Space Solution for State-Feedback

    Full text link
    We develop a complete state-space solution to H_2-optimal decentralized control of poset-causal systems with state-feedback. Our solution is based on the exploitation of a key separability property of the problem, that enables an efficient computation of the optimal controller by solving a small number of uncoupled standard Riccati equations. Our approach gives important insight into the structure of optimal controllers, such as controller degree bounds that depend on the structure of the poset. A novel element in our state-space characterization of the controller is a remarkable pair of transfer functions, that belong to the incidence algebra of the poset, are inverses of each other, and are intimately related to prediction of the state along the different paths on the poset. The results are illustrated by a numerical example.Comment: 39 pages, 2 figures, submitted to IEEE Transactions on Automatic Contro

    Optimal Output Feedback Architecture for Triangular LQG Problems

    Full text link
    Distributed control problems under some specific information constraints can be formulated as (possibly infinite dimensional) convex optimization problems. The underlying motivation of this work is to develop an understanding of the optimal decision making architecture for such problems. In this paper, we particularly focus on the N-player triangular LQG problems and show that the optimal output feedback controllers have attractive state space realizations. The optimal controller can be synthesized using a set of stabilizing solutions to 2N linearly coupled algebraic Riccati equations, which turn out to be easily solvable under reasonable assumptions.Comment: To be presented at 2014 American Control Conferenc

    The â„‹_2 Control Problem for Quadratically Invariant Systems With Delays

    Get PDF
    This technical note gives a new solution to the output feedback â„‹_2 problem for quadratically invariant communication delay patterns. A characterization of all stabilizing controllers satisfying the delay constraints is given and the decentralized â„‹_2 problem is cast as a convex model matching problem. The main result shows that the model matching problem can be reduced to a finite-dimensional quadratic program. A recursive state-space method for computing the optimal controller based on vectorization is given

    Robust Control Structure Selection

    Get PDF
    Screening tools for control structure selection in the presence of model/plant mismatch are developed in the context of the Structured Singular Value (μ) theory. The developed screening tools are designed to aid engineers in the elimination of undesirable control structure candidates for which a robustly performing controller does not exist. Through application on a multicomponent distillation column, it is demonstrated that the developed screening tools can be effective in choosing an appropriate control structure while previously existing methods such as the Condition Number Criterion can lead to erroneous results

    System-level, Input-output and New Parameterizations of Stabilizing Controllers, and Their Numerical Computation

    Full text link
    It is known that the set of internally stabilizing controller Cstab\mathcal{C}_{\text{stab}} is non-convex, but it admits convex characterizations using certain closed-loop maps: a classical result is the {Youla parameterization}, and two recent notions are the {system-level parameterization} (SLP) and the {input-output parameterization} (IOP). In this paper, we address the existence of new convex parameterizations and discuss potential tradeoffs of each parametrization in different scenarios. Our main contributions are: 1) We first reveal that only four groups of stable closed-loop transfer matrices are equivalent to internal stability: one of them is used in the SLP, another one is used in the IOP, and the other two are new, leading to two new convex parameterizations of Cstab\mathcal{C}_{\text{stab}}. 2) We then investigate the properties of these parameterizations after imposing the finite impulse response (FIR) approximation, revealing that the IOP has the best ability of approximating Cstab\mathcal{C}_{\text{stab}} given FIR constraints. 3) These four parameterizations require no \emph{a priori} doubly-coprime factorization of the plant, but impose a set of equality constraints. However, these equality constraints will never be satisfied exactly in numerical computation. We prove that the IOP is numerically robust for open-loop stable plants, in the sense that small mismatches in the equality constraints do not compromise the closed-loop stability. The SLP is known to enjoy numerical robustness in the state feedback case; here, we show that numerical robustness of the four-block SLP controller requires case-by-case analysis in the general output feedback case.Comment: 20 pages; 5 figures. Added extensions on numerial computation and robustness of closed-loop parameterization

    Optimal Control with Information Pattern Constraints

    Get PDF
    Despite the abundance of available literature that starts with the seminal paper of Wang and Davison almost forty years ago, when dealing with the problem of decentralized control for linear dynamical systems, one faces a surprising lack of general design methods, implementable via computationally tractable algorithms. This is mainly due to the fact that for decentralized control configurations, the classical control theoretical framework falls short in providing a systematic analysis of the stabilization problem, let alone cope with additional optimality criteria. Recently, a significant leap occurred through the theoretical machinery developed in Rotkowitz and Lall, IEEE-TAC, vol. 51, 2006, pp. 274-286 which unifies and consolidates many previous results, pinpoints certain tractable decentralized control structures, and outlines the most general known class of convex problems in decentralized control. The decentralized setting is modeled via the structured sparsity constraints paradigm, which proves to be a simple and effective way to formalize many decentralized configurations where the controller feature a given sparsity pattern. Rotkowitz and Lall propose a computationally tractable algorithm for the design of H2 optimal, decentralized controllers for linear and time invariant systems, provided that the plant is strongly stabilizable. The method is built on the assumption that the sparsity constraints imposed on the controller satisfy a certain condition (named quadratic invariance) with respect to the plant and that some decentralized, strongly stablizable, stabilizing controller is available beforehand. For this class of decentralized feedback configurations modeled via sparsity constraints, so called quadratically invariant, we provided complete solutions to several open problems. Firstly, the strong stabilizability assumption was removed via the so called coordinate free parametrization of all, sparsity constrained controllers. Next we have addressed the unsolved problem of stabilizability/stabilization via sparse controllers, using a particular form of the celebrated Youla parametrization. Finally, a new result related to the optimal disturbance attenuation problem in the presence of stable plant perturbations is presented. This result is also valid for quadratically invariant, decentralized feedback configurations. Each result provides a computational, numerically tractable algorithm which is meaningful in the synthesis of sparsity constrained optimal controllers
    • …
    corecore