731 research outputs found

    Graph Subsumption in Abstract State Space Exploration

    Get PDF
    In this paper we present the extension of an existing method for abstract graph-based state space exploration, called neighbourhood abstraction, with a reduction technique based on subsumption. Basically, one abstract state subsumes another when it covers more concrete states; in such a case, the subsumed state need not be included in the state space, thus giving a reduction. We explain the theory and especially also report on a number of experiments, which show that subsumption indeed drastically reduces both the state space and the resources (time and memory) needed to compute it.Comment: In Proceedings GRAPHITE 2012, arXiv:1210.611

    Polynomial Algorithm for Submap Isomorphism: Application to searching patterns in images

    No full text
    International audienceIn this paper, we address the problem of searching for a pattern in a plane graph, i.e., a planar drawing of a planar graph. To do that, we propose to model plane graphs with 2-dimensional combinatorial maps, which provide nice data structures for modelling the topology of a subdivision of a plane into nodes, edges and faces. We define submap isomorphism, we give a polynomial algorithm for this problem, and we show how this problem may be used to search for a pattern in a plane graph. First experimental results show the validity of this approach to efficiently search for patterns in images

    Online Spectral Clustering on Network Streams

    Get PDF
    Graph is an extremely useful representation of a wide variety of practical systems in data analysis. Recently, with the fast accumulation of stream data from various type of networks, significant research interests have arisen on spectral clustering for network streams (or evolving networks). Compared with the general spectral clustering problem, the data analysis of this new type of problems may have additional requirements, such as short processing time, scalability in distributed computing environments, and temporal variation tracking. However, to design a spectral clustering method to satisfy these requirements certainly presents non-trivial efforts. There are three major challenges for the new algorithm design. The first challenge is online clustering computation. Most of the existing spectral methods on evolving networks are off-line methods, using standard eigensystem solvers such as the Lanczos method. It needs to recompute solutions from scratch at each time point. The second challenge is the parallelization of algorithms. To parallelize such algorithms is non-trivial since standard eigen solvers are iterative algorithms and the number of iterations can not be predetermined. The third challenge is the very limited existing work. In addition, there exists multiple limitations in the existing method, such as computational inefficiency on large similarity changes, the lack of sound theoretical basis, and the lack of effective way to handle accumulated approximate errors and large data variations over time. In this thesis, we proposed a new online spectral graph clustering approach with a family of three novel spectrum approximation algorithms. Our algorithms incrementally update the eigenpairs in an online manner to improve the computational performance. Our approaches outperformed the existing method in computational efficiency and scalability while retaining competitive or even better clustering accuracy. We derived our spectrum approximation techniques GEPT and EEPT through formal theoretical analysis. The well established matrix perturbation theory forms a solid theoretic foundation for our online clustering method. We facilitated our clustering method with a new metric to track accumulated approximation errors and measure the short-term temporal variation. The metric not only provides a balance between computational efficiency and clustering accuracy, but also offers a useful tool to adapt the online algorithm to the condition of unexpected drastic noise. In addition, we discussed our preliminary work on approximate graph mining with evolutionary process, non-stationary Bayesian Network structure learning from non-stationary time series data, and Bayesian Network structure learning with text priors imposed by non-parametric hierarchical topic modeling
    • …
    corecore