7,092 research outputs found

    A Maximum Entropy Procedure to Solve Likelihood Equations

    Get PDF
    In this article, we provide initial findings regarding the problem of solving likelihood equations by means of a maximum entropy (ME) approach. Unlike standard procedures that require equating the score function of the maximum likelihood problem at zero, we propose an alternative strategy where the score is instead used as an external informative constraint to the maximization of the convex Shannon\u2019s entropy function. The problem involves the reparameterization of the score parameters as expected values of discrete probability distributions where probabilities need to be estimated. This leads to a simpler situation where parameters are searched in smaller (hyper) simplex space. We assessed our proposal by means of empirical case studies and a simulation study, the latter involving the most critical case of logistic regression under data separation. The results suggested that the maximum entropy reformulation of the score problem solves the likelihood equation problem. Similarly, when maximum likelihood estimation is difficult, as is the case of logistic regression under separation, the maximum entropy proposal achieved results (numerically) comparable to those obtained by the Firth\u2019s bias-corrected approach. Overall, these first findings reveal that a maximum entropy solution can be considered as an alternative technique to solve the likelihood equation

    One-class classifiers based on entropic spanning graphs

    Get PDF
    One-class classifiers offer valuable tools to assess the presence of outliers in data. In this paper, we propose a design methodology for one-class classifiers based on entropic spanning graphs. Our approach takes into account the possibility to process also non-numeric data by means of an embedding procedure. The spanning graph is learned on the embedded input data and the outcoming partition of vertices defines the classifier. The final partition is derived by exploiting a criterion based on mutual information minimization. Here, we compute the mutual information by using a convenient formulation provided in terms of the α\alpha-Jensen difference. Once training is completed, in order to associate a confidence level with the classifier decision, a graph-based fuzzy model is constructed. The fuzzification process is based only on topological information of the vertices of the entropic spanning graph. As such, the proposed one-class classifier is suitable also for data characterized by complex geometric structures. We provide experiments on well-known benchmarks containing both feature vectors and labeled graphs. In addition, we apply the method to the protein solubility recognition problem by considering several representations for the input samples. Experimental results demonstrate the effectiveness and versatility of the proposed method with respect to other state-of-the-art approaches.Comment: Extended and revised version of the paper "One-Class Classification Through Mutual Information Minimization" presented at the 2016 IEEE IJCNN, Vancouver, Canad
    • …
    corecore