2,629 research outputs found

    Applications of incidence bounds in point covering problems

    Get PDF
    In the Line Cover problem a set of n points is given and the task is to cover the points using either the minimum number of lines or at most k lines. In Curve Cover, a generalization of Line Cover, the task is to cover the points using curves with d degrees of freedom. Another generalization is the Hyperplane Cover problem where points in d-dimensional space are to be covered by hyperplanes. All these problems have kernels of polynomial size, where the parameter is the minimum number of lines, curves, or hyperplanes needed. First we give a non-parameterized algorithm for both problems in O*(2^n) (where the O*(.) notation hides polynomial factors of n) time and polynomial space, beating a previous exponential-space result. Combining this with incidence bounds similar to the famous Szemeredi-Trotter bound, we present a Curve Cover algorithm with running time O*((Ck/log k)^((d-1)k)), where C is some constant. Our result improves the previous best times O*((k/1.35)^k) for Line Cover (where d=2), O*(k^(dk)) for general Curve Cover, as well as a few other bounds for covering points by parabolas or conics. We also present an algorithm for Hyperplane Cover in R^3 with running time O*((Ck^2/log^(1/5) k)^k), improving on the previous time of O*((k^2/1.3)^k).Comment: SoCG 201

    On Covering Points with Conics and Strips in the Plane

    Get PDF
    Geometric covering problems have always been of focus in computer scientific research. The generic geometric covering problem asks to cover a set S of n objects with another set of objects whose cardinality is minimum, in a geometric setting. Many versions of geometric cover have been studied in detail, one of which is line cover: Given a set of points in the plane, find the minimum number of lines to cover them. In Euclidean space Rm, this problem is known as Hyperplane Cover, where lines are replaced by affine hyperplanes bounded by dimension d. Line cover is NP-hard, so is its hyperplane analogue. Our thesis focuses on few extensions of hyperplane cover and line cover. One of the techniques used to study NP-hard problems is Fixed Parameter Tractability (FPT), where, in addition to input size, a parameter k is provided for input instance. We ask to solve the problem with respect to k, such that the running time is a function in both n and k, strictly polynomial in n, while the exponential component is limited to k. In this thesis, we study FPT and parameterized complexity theory, the theory of classifying hard problems involving a parameter k. We focus on two new geometric covering problems: covering a set of points in the plane with conics (conic cover) and covering a set of points with strips or fat lines of given width in the plane (fat line cover). A conic is a non-degenerate curve of degree two in the plane. A fat line is defined as a strip of finite width w. In this dissertation, we focus on the parameterized versions of these two problems, where, we are asked to cover the set of points with k conics or k fat lines. We use the existing techniques of FPT algorithms, kernelization and approximation algorithms to study these problems. We do a comprehensive study of these problems, starting with NP-hardness results to studying their parameterized hardness in terms of parameter k. We show that conic cover is fixed parameter tractable, and give an algorithm of running time O∗ ((k/1.38)^4k), where, O∗ implies that the running time is some polynomial in input size. Utilizing special properties of a parabola, we are able to achieve a faster algorithm and show a running time of O∗ ((k/1.15)^3k). For fat line cover, first we establish its NP-hardness, then we explore algorithmic possibilities with respect to parameterized complexity theory. We show W [1]-hardness of fat line cover with respect to the number of fat lines, by showing a parameterized reduction from the problem of stabbing axis-parallel squares in the plane. A parameterized reduction is an algorithm which transforms an instance of one parameterized problem into an instance of another parameterized problem using a FPT-algorithm. In addition, we show that some restricted versions of fat line cover are also W [1]-hard. Further, in this thesis, we explore a restricted version of fat line cover, where the set of points are integer coordinates and allow only axis-parallel lines to cover them. We show that the problem is still NP-hard. We also show that this version is fixed parameter tractable having a kernel size of O (k^2) and give a FPT-algorithm with a running time of O∗ (3^k). Finally, we conclude our study on this problem by giving an approximation algorithm for this version having a constant approximation ratio 2

    Hyperbolic intersection graphs and (quasi)-polynomial time

    Full text link
    We study unit ball graphs (and, more generally, so-called noisy uniform ball graphs) in dd-dimensional hyperbolic space, which we denote by Hd\mathbb{H}^d. Using a new separator theorem, we show that unit ball graphs in Hd\mathbb{H}^d enjoy similar properties as their Euclidean counterparts, but in one dimension lower: many standard graph problems, such as Independent Set, Dominating Set, Steiner Tree, and Hamiltonian Cycle can be solved in 2O(n11/(d1))2^{O(n^{1-1/(d-1)})} time for any fixed d3d\geq 3, while the same problems need 2O(n11/d)2^{O(n^{1-1/d})} time in Rd\mathbb{R}^d. We also show that these algorithms in Hd\mathbb{H}^d are optimal up to constant factors in the exponent under ETH. This drop in dimension has the largest impact in H2\mathbb{H}^2, where we introduce a new technique to bound the treewidth of noisy uniform disk graphs. The bounds yield quasi-polynomial (nO(logn)n^{O(\log n)}) algorithms for all of the studied problems, while in the case of Hamiltonian Cycle and 33-Coloring we even get polynomial time algorithms. Furthermore, if the underlying noisy disks in H2\mathbb{H}^2 have constant maximum degree, then all studied problems can be solved in polynomial time. This contrasts with the fact that these problems require 2Ω(n)2^{\Omega(\sqrt{n})} time under ETH in constant maximum degree Euclidean unit disk graphs. Finally, we complement our quasi-polynomial algorithm for Independent Set in noisy uniform disk graphs with a matching nΩ(logn)n^{\Omega(\log n)} lower bound under ETH. This shows that the hyperbolic plane is a potential source of NP-intermediate problems.Comment: Short version appears in SODA 202

    Parametric shortest-path algorithms via tropical geometry

    Full text link
    We study parameterized versions of classical algorithms for computing shortest-path trees. This is most easily expressed in terms of tropical geometry. Applications include shortest paths in traffic networks with variable link travel times.Comment: 24 pages and 8 figure
    corecore