5,156 research outputs found

    A parameterization process as a categorical construction

    Full text link
    The parameterization process used in the symbolic computation systems Kenzo and EAT is studied here as a general construction in a categorical framework. This parameterization process starts from a given specification and builds a parameterized specification by transforming some operations into parameterized operations, which depend on one additional variable called the parameter. Given a model of the parameterized specification, each interpretation of the parameter, called an argument, provides a model of the given specification. Moreover, under some relevant terminality assumption, this correspondence between the arguments and the models of the given specification is a bijection. It is proved in this paper that the parameterization process is provided by a free functor and the subsequent parameter passing process by a natural transformation. Various categorical notions are used, mainly adjoint functors, pushouts and lax colimits

    Log-mean linear models for binary data

    Get PDF
    This paper introduces a novel class of models for binary data, which we call log-mean linear models. The characterizing feature of these models is that they are specified by linear constraints on the log-mean linear parameter, defined as a log-linear expansion of the mean parameter of the multivariate Bernoulli distribution. We show that marginal independence relationships between variables can be specified by setting certain log-mean linear interactions to zero and, more specifically, that graphical models of marginal independence are log-mean linear models. Our approach overcomes some drawbacks of the existing parameterizations of graphical models of marginal independence

    Discretizing Continuous Action Space for On-Policy Optimization

    Full text link
    In this work, we show that discretizing action space for continuous control is a simple yet powerful technique for on-policy optimization. The explosion in the number of discrete actions can be efficiently addressed by a policy with factorized distribution across action dimensions. We show that the discrete policy achieves significant performance gains with state-of-the-art on-policy optimization algorithms (PPO, TRPO, ACKTR) especially on high-dimensional tasks with complex dynamics. Additionally, we show that an ordinal parameterization of the discrete distribution can introduce the inductive bias that encodes the natural ordering between discrete actions. This ordinal architecture further significantly improves the performance of PPO/TRPO.Comment: Accepted at AAAI Conference on Artificial Intelligence (2020) in New York, NY, USA. An open source implementation can be found at https://github.com/robintyh1/onpolicybaseline

    Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network

    Full text link
    Efficient and high-fidelity prior sampling and inversion for complex geological media is still a largely unsolved challenge. Here, we use a deep neural network of the variational autoencoder type to construct a parametric low-dimensional base model parameterization of complex binary geological media. For inversion purposes, it has the attractive feature that random draws from an uncorrelated standard normal distribution yield model realizations with spatial characteristics that are in agreement with the training set. In comparison with the most commonly used parametric representations in probabilistic inversion, we find that our dimensionality reduction (DR) approach outperforms principle component analysis (PCA), optimization-PCA (OPCA) and discrete cosine transform (DCT) DR techniques for unconditional geostatistical simulation of a channelized prior model. For the considered examples, important compression ratios (200 - 500) are achieved. Given that the construction of our parameterization requires a training set of several tens of thousands of prior model realizations, our DR approach is more suited for probabilistic (or deterministic) inversion than for unconditional (or point-conditioned) geostatistical simulation. Probabilistic inversions of 2D steady-state and 3D transient hydraulic tomography data are used to demonstrate the DR-based inversion. For the 2D case study, the performance is superior compared to current state-of-the-art multiple-point statistics inversion by sequential geostatistical resampling (SGR). Inversion results for the 3D application are also encouraging

    On uniqueness of tensor products of irreducible categorifications

    Full text link
    In this paper, we propose an axiomatic definition for a tensor product categorification. A tensor product categorification is an abelian category with a categorical action of a Kac-Moody algebra g in the sense of Rouquier or Khovanov-Lauda whose Grothendieck group is isomorphic to a tensor product of simple modules. However, we require a much stronger structure than a mere isomorphism of representations; most importantly, each such categorical representation must have standardly stratified structure compatible with the categorification functors, and with combinatorics matching those of the tensor product. With these stronger conditions, we recover a uniqueness theorem similar in flavor to that of Rouquier for categorifications of simple modules. Furthermore, we already know of an example of such a categorification: the representations of algebras T^\lambda previously defined by the second author using generators and relations. Next, we show that tensor product categorifications give a categorical realization of tensor product crystals analogous to that for simple crystals given by cyclotomic quotients of KLR algebras. Examples of such categories are also readily found in more classical representation theory; for finite and affine type A, tensor product categorifications can be realized as quotients of the representation categories of cyclotomic q-Schur algebras.Comment: 27 pages; v2 28 pages, minor correction
    corecore