686 research outputs found

    High Performance Multiview Video Coding

    Get PDF
    Following the standardization of the latest video coding standard High Efficiency Video Coding in 2013, in 2014, multiview extension of HEVC (MV-HEVC) was published and brought significantly better compression performance of around 50% for multiview and 3D videos compared to multiple independent single-view HEVC coding. However, the extremely high computational complexity of MV-HEVC demands significant optimization of the encoder. To tackle this problem, this work investigates the possibilities of using modern parallel computing platforms and tools such as single-instruction-multiple-data (SIMD) instructions, multi-core CPU, massively parallel GPU, and computer cluster to significantly enhance the MVC encoder performance. The aforementioned computing tools have very different computing characteristics and misuse of the tools may result in poor performance improvement and sometimes even reduction. To achieve the best possible encoding performance from modern computing tools, different levels of parallelism inside a typical MVC encoder are identified and analyzed. Novel optimization techniques at various levels of abstraction are proposed, non-aggregation massively parallel motion estimation (ME) and disparity estimation (DE) in prediction unit (PU), fractional and bi-directional ME/DE acceleration through SIMD, quantization parameter (QP)-based early termination for coding tree unit (CTU), optimized resource-scheduled wave-front parallel processing for CTU, and workload balanced, cluster-based multiple-view parallel are proposed. The result shows proposed parallel optimization techniques, with insignificant loss to coding efficiency, significantly improves the execution time performance. This , in turn, proves modern parallel computing platforms, with appropriate platform-specific algorithm design, are valuable tools for improving the performance of computationally intensive applications

    Implementation And Optimizaton Of Real-time H.264 Baseline Encoder On Tms320dm642 Dsp

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2007Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2007Günümüzde sayısal video kodlama sayısal gözetim sistemleri, video konferans, mobil uygulamalar ve video yayını gibi bir çok uygulamada zorunlu hale gelmiştir. Uluslararası bir video sıkıştırma standardı olan H.264/MPEG-4 bölüm 10, daha önceki standartlara göre kodlama verimini iyileştirmek amacıyla geliştirilmiştir. Fakat, bu kodlama geliştirmesi beraberinde kodlama karmaşıklığının da artmasına yol açmaktadır. Bu tez çalışmasında Texas Instruments TMS320DM642 sayısal sinyal işleyici üzerinde H.264 temel profil kodlayıcı gerçeklenmiştir. DM642 DSP çekirdeği üzerindeki gerçek zamanlı H.264/AVC kodlayıcı uygulaması hata esnekliği araçları ve çeyrek piksel hareket dengeleme dışında standart tüm H.264/AVC temel profil kodlama araçlarını sunmaktadır. Çeyrek piksel hareket dengelem yerine, tüm parlaklılık ve renklik bileşenleri için tam sayı ve yarım piksel pozisyonlarında hareket kestirim ve dengeleme gerçeklenmiştir. Kullanılan DM642 DSP çekirdeği platformu, 2-seviyeli bellek/önbellek aşama düzenine sahip ve VLIW içeren yüksek performanslı sayısal işlemci olarak tasarlanmıştır. Sunulan H.264 temel kodlayıcı sistemin gerçeklenmesi ve eniyilemesi bu tezin konusudur. Üstelik, algoritma bazlı, mimari ve bellek stratejilerini içeren eniyileme çalışma fazları detaylarıyla açıklanmaktadır. H.264/AVC video kodlayıcının hem geliştirme ortamında hem de DM642 EVM donanım ortamında çalışması doğrulanmıştır. Kısaca, kodlayıcı sisteme giriş olan CIF çözünürlükte sıkıştırılmamış YUV video dizisi H.264 Annex-B dosya biçiminde ve de ekrana video çıktı verilerek sıkıştırılmaktadır. Ek olarak, kodlayıcı çıktısı H.264 referans yazılımla doğruluğu kontrol edilmiş ve uyumluluğu kanıtlanmıştır.Recently, digital video coding is mandatory in many applications such as digital surveillance systems, video conferencing, mobile applications as well as video broadcasts. The H.264/MPEG-4 Part 10, an international video compression standard, is developed for improving the coding efficiency compared to previous standards. However, the coding improvement comes with an increase in coding complexity. In this thesis, an H.264 baseline profile encoder is implemented on Texas Instruments TMS320DM642 digital signal processor. The real-time implementation of the H.264/AVC encoder on DM642 DSP core offers most of the standard H.264/AVC baseline profile coding tools except error resiliency tools and quarter-pel motion estimation. Instead of quarter-pel motion compensation, integer and half pixel position motion estimation and compensation for all luminance and chrominance components are implemented. The target platform, DM64 DSP core, is designed as a high-performance digital media processor with two-level memory/cache hierarchy and VLIW architecture. The subject of the thesis is H.264 baseline encoder system realization and optimization on the target platform. Moreover, the study of optimization phases covering algorithmic, architectural and memory strategies are clarified in details. The H.264/AVC encoder system is verified both to execute on the development workstation and DM642 EVM (Evaluation Module) hardware platform. Briefly, the uncompressed input of a YUV video sequence with CIF resolution to the encoder system is compressed to H.264 Annex-B file format and displayed on screen. Additionally, the encoder output is verified with H.264 reference software and the compliancy is proven.Yüksek LisansM.Sc

    Real-time scalable video coding for surveillance applications on embedded architectures

    Get PDF

    Artificial Intelligence Technology

    Get PDF
    This open access book aims to give our readers a basic outline of today’s research and technology developments on artificial intelligence (AI), help them to have a general understanding of this trend, and familiarize them with the current research hotspots, as well as part of the fundamental and common theories and methodologies that are widely accepted in AI research and application. This book is written in comprehensible and plain language, featuring clearly explained theories and concepts and extensive analysis and examples. Some of the traditional findings are skipped in narration on the premise of a relatively comprehensive introduction to the evolution of artificial intelligence technology. The book provides a detailed elaboration of the basic concepts of AI, machine learning, as well as other relevant topics, including deep learning, deep learning framework, Huawei MindSpore AI development framework, Huawei Atlas computing platform, Huawei AI open platform for smart terminals, and Huawei CLOUD Enterprise Intelligence application platform. As the world’s leading provider of ICT (information and communication technology) infrastructure and smart terminals, Huawei’s products range from digital data communication, cyber security, wireless technology, data storage, cloud computing, and smart computing to artificial intelligence

    IMPLEMENTASI HEVC CODEC PADA PLATFORM BERBASIS FPGA

    Get PDF
    High Efficiency Video Coding (HEVC) telah di desain sebagai standar baru untuk beberapa aplikasi video dan memiliki peningkatan performa dibanding dengan standar sebelumnya. Meskipun HEVC mencapai efisiensi coding yang tinggi, namun HEVC memiliki kekurangan pada beban pemrosesan tinggi dan loading yang berat ketika melakukan proses encoding video. Untuk meningkatkan performa encoder, kami bertujuan untuk mengimplementasikan HEVC codec pada Zynq 7000 AP SoC. Kami mencoba mengimplementasikan HEVC menggunakan tiga desain sistem. Pertama, HEVC codec di implementasikan pada Zynq PS. Kedua, encoder HEVC di implementasikan dengan hardware/software co-design. Ketiga, mengimplementasikan sebagian dari encoder HEVC pada Zynq PL. Pada implementasi kami menggunakan Xilinx Vivado HLS untuk mengembangkan codec. Hasil menunjukkan bahwa HEVC codec dapat di implementasikan pada Zynq PS. Codec dapat mengurangi ukuran video dibanding ukuran asli video pada format H.264. Kualitas video hampir sama dengan format H.264. Sayangnya, kami tidak dapat menyelesaikan desain dengan hardware/software co-design karena kompleksitas coding untuk validasi kode C pada Vivado HLS. Hasil lain, sebagian dari encoder HEVC dapat di implementasikan pada Zynq PL, yaitu HEVC 2D IDCT. Dari implementasi kami dapat mengoptimalkan fungsi loop pada HEVC 2D dan 1D IDCT menggunakan pipelining. Perbandingan hasil antara pipelining inner-loop dan outer-loop menunjukkan bahwa pipelining di outer-loop dapat meningkatkan performa dilihat dari nilai latency

    Artificial Intelligence Technology

    Get PDF
    This open access book aims to give our readers a basic outline of today’s research and technology developments on artificial intelligence (AI), help them to have a general understanding of this trend, and familiarize them with the current research hotspots, as well as part of the fundamental and common theories and methodologies that are widely accepted in AI research and application. This book is written in comprehensible and plain language, featuring clearly explained theories and concepts and extensive analysis and examples. Some of the traditional findings are skipped in narration on the premise of a relatively comprehensive introduction to the evolution of artificial intelligence technology. The book provides a detailed elaboration of the basic concepts of AI, machine learning, as well as other relevant topics, including deep learning, deep learning framework, Huawei MindSpore AI development framework, Huawei Atlas computing platform, Huawei AI open platform for smart terminals, and Huawei CLOUD Enterprise Intelligence application platform. As the world’s leading provider of ICT (information and communication technology) infrastructure and smart terminals, Huawei’s products range from digital data communication, cyber security, wireless technology, data storage, cloud computing, and smart computing to artificial intelligence

    A Decade of Neural Networks: Practical Applications and Prospects

    Get PDF
    The Jet Propulsion Laboratory Neural Network Workshop, sponsored by NASA and DOD, brings together sponsoring agencies, active researchers, and the user community to formulate a vision for the next decade of neural network research and application prospects. While the speed and computing power of microprocessors continue to grow at an ever-increasing pace, the demand to intelligently and adaptively deal with the complex, fuzzy, and often ill-defined world around us remains to a large extent unaddressed. Powerful, highly parallel computing paradigms such as neural networks promise to have a major impact in addressing these needs. Papers in the workshop proceedings highlight benefits of neural networks in real-world applications compared to conventional computing techniques. Topics include fault diagnosis, pattern recognition, and multiparameter optimization

    Application-aware optimization of Artificial Intelligence for deployment on resource constrained devices

    Get PDF
    Artificial intelligence (AI) is changing people's everyday life. AI techniques such as Deep Neural Networks (DNN) rely on heavy computational models, which are in principle designed to be executed on powerful HW platforms, such as desktop or server environments. However, the increasing need to apply such solutions in people's everyday life has encouraged the research for methods to allow their deployment on embedded, portable and stand-alone devices, such as mobile phones, which exhibit relatively low memory and computational resources. Such methods targets both the development of lightweight AI algorithms and their acceleration through dedicated HW. This thesis focuses on the development of lightweight AI solutions, with attention to deep neural networks, to facilitate their deployment on resource constrained devices. Focusing on the computer vision field, we show how putting together the self learning ability of deep neural networks with application-specific knowledge, in the form of feature engineering, it is possible to dramatically reduce the total memory and computational burden, thus allowing the deployment on edge devices. The proposed approach aims to be complementary to already existing application-independent network compression solutions. In this work three main DNN optimization goals have been considered: increasing speed and accuracy, allowing training at the edge, and allowing execution on a microcontroller. For each of these we deployed the resulting algorithm to the target embedded device and measured its performance

    Etude et mise en place d'une plateforme d'adaptation multiservice embarquée pour la gestion de flux multimédia à différents niveaux logiciels et matériels

    Get PDF
    Les avancées technologiques ont permis la commercialisation à grande échelle de terminaux mobiles. De ce fait, l homme est de plus en plus connecté et partout. Ce nombre grandissant d usagers du réseau ainsi que la forte croissance du contenu disponible, aussi bien d un point de vue quantitatif que qualitatif saturent les réseaux et l augmentation des moyens matériels (passage à la fibre optique) ne suffisent pas. Pour surmonter cela, les réseaux doivent prendre en compte le type de contenu (texte, vidéo, ...) ainsi que le contexte d utilisation (état du réseau, capacité du terminal, ...) pour assurer une qualité d expérience optimum. A ce sujet, la vidéo fait partie des contenus les plus critiques. Ce type de contenu est non seulement de plus en plus consommé par les utilisateurs mais est aussi l un des plus contraignant en terme de ressources nécéssaires à sa distribution (taille serveur, bande passante, ). Adapter un contenu vidéo en fonction de l état du réseau (ajuster son débit binaire à la bande passante) ou des capacités du terminal (s assurer que le codec soit nativement supporté) est indispensable. Néanmoins, l adaptation vidéo est un processus qui nécéssite beaucoup de ressources. Cela est antinomique à son utilisation à grande echelle dans les appareils à bas coûts qui constituent aujourd hui une grande part dans l ossature du réseau Internet. Cette thèse se concentre sur la conception d un système d adaptation vidéo à bas coût et temps réel qui prendrait place dans ces réseaux du futur. Après une analyse du contexte, un système d adaptation générique est proposé et évalué en comparaison de l état de l art. Ce système est implémenté sur un FPGA afin d assurer les performances (temps-réels) et la nécessité d une solution à bas coût. Enfin, une étude sur les effets indirects de l adaptation vidéo est menée.On the one hand, technology advances have led to the expansion of the handheld devices market. Thanks to this expansion, people are more and more connected and more and more data are exchanged over the Internet. On the other hand, this huge amound of data imposes drastic constrains in order to achieve sufficient quality. The Internet is now showing its limits to assure such quality. To answer nowadays limitations, a next generation Internet is envisioned. This new network takes into account the content nature (video, audio, ...) and the context (network state, terminal capabilities ...) to better manage its own resources. To this extend, video manipulation is one of the key concept that is highlighted in this arising context. Video content is more and more consumed and at the same time requires more and more resources. Adapting videos to the network state (reducing its bitrate to match available bandwidth) or to the terminal capabilities (screen size, supported codecs, ) appears mandatory and is foreseen to take place in real time in networking devices such as home gateways. However, video adaptation is a resource intensive task and must be implemented using hardware accelerators to meet the desired low cost and real time constraints.In this thesis, content- and context-awareness is first analyzed to be considered at the network side. Secondly, a generic low cost video adaptation system is proposed and compared to existing solutions as a trade-off between system complexity and quality. Then, hardware conception is tackled as this system is implemented in an FPGA based architecture. Finally, this system is used to evaluate the indirect effects of video adaptation; energy consumption reduction is achieved at the terminal side by reducing video characteristics thus permitting an increased user experience for End-Users.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF
    corecore