179 research outputs found

    A Parallel Training Algorithm for Hierarchical Pitman-Yor Process Language Models

    Get PDF
    The Hierarchical Pitman Yor Process Language Model (HPYLM) is a Bayesian language model based on a non-parametric prior, the Pitman-Yor Process. It has been demonstrated, both theoretically and practically, that the HPYLM can provide better smoothing for language modeling, compared with state-of-the-art approaches such as interpolated Kneser-Ney and modified Kneser-Ney smoothing. However, estimation of Bayesian language models is expensive in terms of both computation time and memory; the inference is approximate and requires a number of iterations to converge. In this paper, we present a parallel training algorithm for the HPYLM, which enables the approach to be applied in the context of automatic speech recognition, using large training corpora with large vocabularies. We demonstrate the effectiveness of the proposed algorithm by estimating language models from corpora for meeting transcription containing over 200 million words, and observe significant reductions in perplexity and word error rate

    Modelling the Lexicon in Unsupervised Part of Speech Induction

    Full text link
    Automatically inducing the syntactic part-of-speech categories for words in text is a fundamental task in Computational Linguistics. While the performance of unsupervised tagging models has been slowly improving, current state-of-the-art systems make the obviously incorrect assumption that all tokens of a given word type must share a single part-of-speech tag. This one-tag-per-type heuristic counters the tendency of Hidden Markov Model based taggers to over generate tags for a given word type. However, it is clearly incompatible with basic syntactic theory. In this paper we extend a state-of-the-art Pitman-Yor Hidden Markov Model tagger with an explicit model of the lexicon. In doing so we are able to incorporate a soft bias towards inducing few tags per type. We develop a particle filter for drawing samples from the posterior of our model and present empirical results that show that our model is competitive with and faster than the state-of-the-art without making any unrealistic restrictions.Comment: To be presented at the 14th Conference of the European Chapter of the Association for Computational Linguistic

    Hierarchical Bayesian Language Models for Conversational Speech Recognition

    Get PDF
    Traditional n-gram language models are widely used in state-of-the-art large vocabulary speech recognition systems. This simple model suffers from some limitations, such as overfitting of maximum-likelihood estimation and the lack of rich contextual knowledge sources. In this paper, we exploit a hierarchical Bayesian interpretation for language modeling, based on a nonparametric prior called the Pitman--Yor process. This offers a principled approach to language model smoothing, embedding the power-law distribution for natural language. Experiments on the recognition of conversational speech in multiparty meetings demonstrate that by using hierarchical Bayesian language models, we are able to achieve significant reductions in perplexity and word error rate

    Word alignment and smoothing methods in statistical machine translation: Noise, prior knowledge and overfitting

    Get PDF
    This thesis discusses how to incorporate linguistic knowledge into an SMT system. Although one important category of linguistic knowledge is that obtained by a constituent / dependency parser, a POS / super tagger, and a morphological analyser, linguistic knowledge here includes larger domains than this: Multi-Word Expressions, Out-Of-Vocabulary words, paraphrases, lexical semantics (or non-literal translations), named-entities, coreferences, and transliterations. The first discussion is about word alignment where we propose a MWE-sensitive word aligner. The second discussion is about the smoothing methods for a language model and a translation model where we propose a hierarchical Pitman-Yor process-based smoothing method. The common grounds for these discussion are the examination of three exceptional cases from real-world data: the presence of noise, the availability of prior knowledge, and the problem of underfitting. Notable characteristics of this design are the careful usage of (Bayesian) priors in order that it can capture both frequent and linguistically important phenomena. This can be considered to provide one example to solve the problems of statistical models which often aim to learn from frequent examples only, and often overlook less frequent but linguistically important phenomena

    Bibliographic Analysis on Research Publications using Authors, Categorical Labels and the Citation Network

    Full text link
    Bibliographic analysis considers the author's research areas, the citation network and the paper content among other things. In this paper, we combine these three in a topic model that produces a bibliographic model of authors, topics and documents, using a nonparametric extension of a combination of the Poisson mixed-topic link model and the author-topic model. This gives rise to the Citation Network Topic Model (CNTM). We propose a novel and efficient inference algorithm for the CNTM to explore subsets of research publications from CiteSeerX. The publication datasets are organised into three corpora, totalling to about 168k publications with about 62k authors. The queried datasets are made available online. In three publicly available corpora in addition to the queried datasets, our proposed model demonstrates an improved performance in both model fitting and document clustering, compared to several baselines. Moreover, our model allows extraction of additional useful knowledge from the corpora, such as the visualisation of the author-topics network. Additionally, we propose a simple method to incorporate supervision into topic modelling to achieve further improvement on the clustering task.Comment: Preprint for Journal Machine Learnin

    Power Law Discounting for N-Gram Language Models

    Get PDF
    We present an approximation to the Bayesian hierarchical Pitman-Yor process language model which maintains the power law distribution over word tokens, while not requiring a computationally expensive approximate inference process. This approximation, which we term power law discounting, has a similar computational complexity to interpolated and modified Kneser-Ney smoothing. We performed experiments on meeting transcription using the NIST RT06s evaluation data and the AMI corpus, with a vocabulary of 50,000 words and a language model training set of up to 211 million words. Our results indicate that power law discounting results in statistically significant reductions in perplexity and word error rate compared to both interpolated and modified Kneser-Ney smoothing, while producing similar results to the hierarchical Pitman-Yor process language model

    Topic modeling-based domain adaptation for system combination

    Get PDF
    This paper gives the system description of the domain adaptation team of Dublin City University for our participation in the system combination task in the Second Workshop on Applying Machine Learning Techniques to Optimise the Division of Labour in Hybrid MT (ML4HMT-12). We used the results of unsupervised document classification as meta information to the system combination module. For the Spanish-English data, our strategy achieved 26.33 BLEU points, 0.33 BLEU points absolute improvement over the standard confusion-network-based system combination. This was the best score in terms of BLEU among six participants in ML4HMT-12

    Nonparametric Bayesian Double Articulation Analyzer for Direct Language Acquisition from Continuous Speech Signals

    Full text link
    Human infants can discover words directly from unsegmented speech signals without any explicitly labeled data. In this paper, we develop a novel machine learning method called nonparametric Bayesian double articulation analyzer (NPB-DAA) that can directly acquire language and acoustic models from observed continuous speech signals. For this purpose, we propose an integrative generative model that combines a language model and an acoustic model into a single generative model called the "hierarchical Dirichlet process hidden language model" (HDP-HLM). The HDP-HLM is obtained by extending the hierarchical Dirichlet process hidden semi-Markov model (HDP-HSMM) proposed by Johnson et al. An inference procedure for the HDP-HLM is derived using the blocked Gibbs sampler originally proposed for the HDP-HSMM. This procedure enables the simultaneous and direct inference of language and acoustic models from continuous speech signals. Based on the HDP-HLM and its inference procedure, we developed a novel double articulation analyzer. By assuming HDP-HLM as a generative model of observed time series data, and by inferring latent variables of the model, the method can analyze latent double articulation structure, i.e., hierarchically organized latent words and phonemes, of the data in an unsupervised manner. The novel unsupervised double articulation analyzer is called NPB-DAA. The NPB-DAA can automatically estimate double articulation structure embedded in speech signals. We also carried out two evaluation experiments using synthetic data and actual human continuous speech signals representing Japanese vowel sequences. In the word acquisition and phoneme categorization tasks, the NPB-DAA outperformed a conventional double articulation analyzer (DAA) and baseline automatic speech recognition system whose acoustic model was trained in a supervised manner.Comment: 15 pages, 7 figures, Draft submitted to IEEE Transactions on Autonomous Mental Development (TAMD
    corecore