1,726 research outputs found

    Coarse Stability and Bifurcation Analysis Using Stochastic Simulators: Kinetic Monte Carlo Examples

    Full text link
    We implement a computer-assisted approach that, under appropriate conditions, allows the bifurcation analysis of the coarse dynamic behavior of microscopic simulators without requiring the explicit derivation of closed macroscopic equations for this behavior. The approach is inspired by the so-called time-step per based numerical bifurcation theory. We illustrate the approach through the computation of both stable and unstable coarsely invariant states for Kinetic Monte Carlo models of three simple surface reaction schemes. We quantify the linearized stability of these coarsely invariant states, perform pseudo-arclength continuation, detect coarse limit point and coarse Hopf bifurcations and construct two-parameter bifurcation diagrams.Comment: 26 pages, 5 figure

    Binding by random bursts : a computational model of cognitive control

    Get PDF

    PID control system analysis and design

    Get PDF
    With its three-term functionality offering treatment of both transient and steady-state responses, proportional-integral-derivative (PID) control provides a generic and efficient solution to realworld control problems. The wide application of PID control has stimulated and sustained research and development to "get the best out of PID", and "the search is on to find the next key technology or methodology for PID tuning". This article presents remedies for problems involving the integral and derivative terms. PID design objectives, methods, and future directions are discussed. Subsequently, a computerized, simulation-based approach is presented, together with illustrative design results for first-order, higher order, and nonlinear plants. Finally, we discuss differences between academic research and industrial practice, so as to motivate new research directions in PID control

    Conedy: a scientific tool to investigate Complex Network Dynamics

    Full text link
    We present Conedy, a performant scientific tool to numerically investigate dynamics on complex networks. Conedy allows to create networks and provides automatic code generation and compilation to ensure performant treatment of arbitrary node dynamics. Conedy can be interfaced via an internal script interpreter or via a Python module

    Evolutionary robotics and neuroscience

    Get PDF
    No description supplie
    corecore