130 research outputs found

    Shifted Laplacian multigrid for the elastic Helmholtz equation

    Full text link
    The shifted Laplacian multigrid method is a well known approach for preconditioning the indefinite linear system arising from the discretization of the acoustic Helmholtz equation. This equation is used to model wave propagation in the frequency domain. However, in some cases the acoustic equation is not sufficient for modeling the physics of the wave propagation, and one has to consider the elastic Helmholtz equation. Such a case arises in geophysical seismic imaging applications, where the earth's subsurface is the elastic medium. The elastic Helmholtz equation is much harder to solve than its acoustic counterpart, partially because it is three times larger, and partially because it models more complicated physics. Despite this, there are very few solvers available for the elastic equation compared to the array of solvers that are available for the acoustic one. In this work we extend the shifted Laplacian approach to the elastic Helmholtz equation, by combining the complex shift idea with approaches for linear elasticity. We demonstrate the efficiency and properties of our solver using numerical experiments for problems with heterogeneous media in two and three dimensions

    Parallel accelerated cyclic reduction preconditioner for three-dimensional elliptic PDEs with variable coefficients

    Full text link
    We present a robust and scalable preconditioner for the solution of large-scale linear systems that arise from the discretization of elliptic PDEs amenable to rank compression. The preconditioner is based on hierarchical low-rank approximations and the cyclic reduction method. The setup and application phases of the preconditioner achieve log-linear complexity in memory footprint and number of operations, and numerical experiments exhibit good weak and strong scalability at large processor counts in a distributed memory environment. Numerical experiments with linear systems that feature symmetry and nonsymmetry, definiteness and indefiniteness, constant and variable coefficients demonstrate the preconditioner applicability and robustness. Furthermore, it is possible to control the number of iterations via the accuracy threshold of the hierarchical matrix approximations and their arithmetic operations, and the tuning of the admissibility condition parameter. Together, these parameters allow for optimization of the memory requirements and performance of the preconditioner.Comment: 24 pages, Elsevier Journal of Computational and Applied Mathematics, Dec 201

    A short note on the nested-sweep polarized traces method for the 2D Helmholtz equation

    Full text link
    We present a variant of the solver in Zepeda-N\'u\~nez and Demanet (2014), for the 2D high-frequency Helmholtz equation in heterogeneous acoustic media. By changing the domain decomposition from a layered to a grid-like partition, this variant yields improved asymptotic online and offline runtimes and a lower memory footprint. The solver has online parallel complexity that scales \emph{sub linearly} as O(NP)\mathcal{O} \left( \frac{N}{P} \right), where NN is the number of volume unknowns, and PP is the number of processors, provided that P=O(N1/5)P = \mathcal{O}(N^{1/5}). The variant in Zepeda-N\'u\~nez and Demanet (2014) only afforded P=O(N1/8)P = \mathcal{O}(N^{1/8}). Algorithmic scalability is a prime requirement for wave simulation in regimes of interest for geophysical imaging.Comment: 5 pages, 5 figure

    Sweeping Preconditioner for the Helmholtz Equation: Moving Perfectly Matched Layers

    Full text link
    This paper introduces a new sweeping preconditioner for the iterative solution of the variable coefficient Helmholtz equation in two and three dimensions. The algorithms follow the general structure of constructing an approximate LDLtLDL^t factorization by eliminating the unknowns layer by layer starting from an absorbing layer or boundary condition. The central idea of this paper is to approximate the Schur complement matrices of the factorization using moving perfectly matched layers (PMLs) introduced in the interior of the domain. Applying each Schur complement matrix is equivalent to solving a quasi-1D problem with a banded LU factorization in the 2D case and to solving a quasi-2D problem with a multifrontal method in the 3D case. The resulting preconditioner has linear application cost and the preconditioned iterative solver converges in a number of iterations that is essentially indefinite of the number of unknowns or the frequency. Numerical results are presented in both two and three dimensions to demonstrate the efficiency of this new preconditioner.Comment: 25 page

    A rapidly converging domain decomposition method for the Helmholtz equation

    Full text link
    A new domain decomposition method is introduced for the heterogeneous 2-D and 3-D Helmholtz equations. Transmission conditions based on the perfectly matched layer (PML) are derived that avoid artificial reflections and match incoming and outgoing waves at the subdomain interfaces. We focus on a subdivision of the rectangular domain into many thin subdomains along one of the axes, in combination with a certain ordering for solving the subdomain problems and a GMRES outer iteration. When combined with multifrontal methods, the solver has near-linear cost in examples, due to very small iteration numbers that are essentially independent of problem size and number of subdomains. It is to our knowledge only the second method with this property next to the moving PML sweeping method.Comment: 16 pages, 3 figures, 6 tables - v2 accepted for publication in the Journal of Computational Physic

    A short note on a pipelined polarized-trace algorithm for 3D Helmholtz

    Get PDF
    We present a fast solver for the 3D high-frequency Helmholtz equation in heterogeneous, constant density, acoustic media. The solver is based on the method of polarized traces, coupled with distributed linear algebra libraries and pipelining to obtain a solver with online runtime O(max(1, R/n)N logN) where N = n[superscript 3] is the total number of degrees of freedom and R is the number of right-hand sides.TOTAL (Firm
    • …
    corecore