1,019 research outputs found

    Multigrid Strategies for Viscous Flow Solvers on Anisotropic Unstructured Meshes

    Get PDF
    Unstructured multigrid techniques for relieving the stiffness associated with high-Reynolds number viscous flow simulations on extremely stretched grids are investigated. One approach consists of employing a semi-coarsening or directional-coarsening technique, based on the directions of strong coupling within the mesh, in order to construct more optimal coarse grid levels. An alternate approach is developed which employs directional implicit smoothing with regular fully coarsened multigrid levels. The directional implicit smoothing is obtained by constructing implicit lines in the unstructured mesh based on the directions of strong coupling. Both approaches yield large increases in convergence rates over the traditional explicit full-coarsening multigrid algorithm. However, maximum benefits are achieved by combining the two approaches in a coupled manner into a single algorithm. An order of magnitude increase in convergence rate over the traditional explicit full-coarsening algorithm is demonstrated, and convergence rates for high-Reynolds number viscous flows which are independent of the grid aspect ratio are obtained. Further acceleration is provided by incorporating low-Mach-number preconditioning techniques, and a Newton-GMRES strategy which employs the multigrid scheme as a preconditioner. The compounding effects of these various techniques on speed of convergence is documented through several example test cases

    CFL3D, FUN3d, and NSU3D Contributions to the Fifth Drag Prediction Workshop

    Get PDF
    Results presented at the Fifth Drag Prediction Workshop using CFL3D, FUN3D, and NSU3D are described. These are calculations on the workshop provided grids and drag adapted grids. The NSU3D results have been updated to reflect an improvement to skin friction calculation on skewed grids. FUN3D results generated after the workshop are included for custom participant generated grids and a grid from a previous workshop. Uniform grid refinement at the design condition shows a tight grouping in calculated drag, where the variation in the pressure component of drag is larger than the skin friction component. At this design condition, A fine-grid drag value was predicted with a smaller drag adjoint adapted grid via tetrahedral adaption to a metric and mixed-element subdivision. The buffet study produced larger variation than the design case, which is attributed to large differences in the predicted side-of-body separation extent. Various modeling and discretization approaches had a strong impact on predicted side-of-body separation. This large wing root separation bubble was not observed in wind tunnel tests indicating that more work is necessary in modeling wing root juncture flows to predict experiments

    Directional Agglomeration Multigrid Techniques for High Reynolds Number Viscous Flow Solvers

    Get PDF
    A preconditioned directional-implicit agglomeration algorithm is developed for solving two- and three-dimensional viscous flows on highly anisotropic unstructured meshes of mixed-element types. The multigrid smoother consists of a pre-conditioned point- or line-implicit solver which operates on lines constructed in the unstructured mesh using a weighted graph algorithm. Directional coarsening or agglomeration is achieved using a similar weighted graph algorithm. A tight coupling of the line construction and directional agglomeration algorithms enables the use of aggressive coarsening ratios in the multigrid algorithm, which in turn reduces the cost of a multigrid cycle. Convergence rates which are independent of the degree of grid stretching are demonstrated in both two and three dimensions. Further improvement of the three-dimensional convergence rates through a GMRES technique is also demonstrated

    A 3D agglomeration multigrid solver for the Reynolds-averaged Navier-Stokes equations on unstructured meshes

    Get PDF
    An agglomeration multigrid strategy is developed and implemented for the solution of three-dimensional steady viscous flows. The method enables convergence acceleration with minimal additional memory overheads, and is completely automated, in that it can deal with grids of arbitrary construction. The multigrid technique is validated by comparing the delivered convergence rates with those obtained by a previously developed overset-mesh multigrid approach, and by demonstrating grid independent convergence rates for aerodynamic problems on very large grids. Prospects for further increases in multigrid efficiency for high-Reynolds number viscous flows on highly stretched meshes are discussed

    Adaptive Meshing Techniques for Viscous Flow Calculations on Mixed Element Unstructured Meshes

    Get PDF
    An adaptive refinement strategy based on hierarchical element subdivision is formulated and implemented for meshes containing arbitrary mixtures of tetrahendra, hexahendra, prisms and pyramids. Special attention is given to keeping memory overheads as low as possible. This procedure is coupled with an algebraic multigrid flow solver which operates on mixed-element meshes. Inviscid flows as well as viscous flows are computed an adaptively refined tetrahedral, hexahedral, and hybrid meshes. The efficiency of the method is demonstrated by generating an adapted hexahedral mesh containing 3 million vertices on a relatively inexpensive workstation

    ICASE/LaRC Workshop on Adaptive Grid Methods

    Get PDF
    Solution-adaptive grid techniques are essential to the attainment of practical, user friendly, computational fluid dynamics (CFD) applications. In this three-day workshop, experts gathered together to describe state-of-the-art methods in solution-adaptive grid refinement, analysis, and implementation; to assess the current practice; and to discuss future needs and directions for research. This was accomplished through a series of invited and contributed papers. The workshop focused on a set of two-dimensional test cases designed by the organizers to aid in assessing the current state of development of adaptive grid technology. In addition, a panel of experts from universities, industry, and government research laboratories discussed their views of needs and future directions in this field

    Institute for Computational Mechanics in Propulsion (ICOMP)

    Get PDF
    The Institute for Computational Mechanics in Propulsion (ICOMP) is a combined activity of Case Western Reserve University, Ohio Aerospace Institute (OAI) and NASA Lewis. The purpose of ICOMP is to develop techniques to improve problem solving capabilities in all aspects of computational mechanics related to propulsion. The activities at ICOMP during 1991 are described

    FUN3D and CFL3D Computations for the First High Lift Prediction Workshop

    Get PDF
    Two Reynolds-averaged Navier-Stokes codes were used to compute flow over the NASA Trapezoidal Wing at high lift conditions for the 1st AIAA CFD High Lift Prediction Workshop, held in Chicago in June 2010. The unstructured-grid code FUN3D and the structured-grid code CFL3D were applied to several different grid systems. The effects of code, grid system, turbulence model, viscous term treatment, and brackets were studied. The SST model on this configuration predicted lower lift than the Spalart-Allmaras model at high angles of attack; the Spalart-Allmaras model agreed better with experiment. Neglecting viscous cross-derivative terms caused poorer prediction in the wing tip vortex region. Output-based grid adaptation was applied to the unstructured-grid solutions. The adapted grids better resolved wake structures and reduced flap flow separation, which was also observed in uniform grid refinement studies. Limitations of the adaptation method as well as areas for future improvement were identified

    [Research activities in applied mathematics, fluid mechanics, and computer science]

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995
    corecore