2,432 research outputs found

    CONTAINER LOADING ALLOCATION TO IMPROVE SPACE AND LOADING UTILIZATION OF FLEET COMPARTMENT CAPACITY BY USING GENETIC ALGORITHM

    Get PDF
    PT. XYZ is the current leading automotive company, the supplier that is part of its subsidiary company provides services in form of supply and distribution of raw material. Based on data collected from January till March, the problem appears is the compartment fleet utilization that is far from the maximum capacity. According to the plan production control department, the desired average loading utilization is 16 ton per delivery, while the average loading utilization is 42% or 6,8 ton per delivery. In addition, there are also some deliveries exceeding maximum capacity allowed. Therefore in this research, the most suitable loading pattern is needed to improve utilization of fleet compartment with heterogeneous fleet and heterogeneous material dimension. Loading pattern is also needed as supporting tools for the department by considering weight limit, physical dimension of material and compartment fleet dimension, so that overloaded and unburdened deliveries can be avoided. The research is conducted in plan production control department to gain more information about the fleet, production demand, and raw material properties. Genetic algorithm is used as method for solving the problem and visualize the loading pattern by using Matlab. The calculation is conducted toward loading and space utilization of compartment fleet. From the research, the utilization of space can be optimized to 6% and loading utilization can be optimized up to 50%

    Volumetric Techniques for Product Routing and Loading Optimisation in Industry 4.0: A Review

    Get PDF
    Industry 4.0 has become a crucial part in the majority of processes, components, and related modelling, as well as predictive tools that allow a more efficient, automated and sustainable approach to industry. The availability of large quantities of data, and the advances in IoT, AI, and data-driven frameworks, have led to an enhanced data gathering, assessment, and extraction of actionable information, resulting in a better decision-making process. Product picking and its subsequent packing is an important area, and has drawn increasing attention for the research community. However, depending of the context, some of the related approaches tend to be either highly mathematical, or applied to a specific context. This article aims to provide a survey on the main methods, techniques, and frameworks relevant to product packing and to highlight the main properties and features that should be further investigated to ensure a more efficient and optimised approach

    The double traveling salesman problem with partial last-in-first-out loading constraints

    Get PDF
    In this paper, we introduce the double traveling salesman problem with partial last-in-first-out loading constraints (DTSPPL). It is a pickup-and-delivery single-vehicle routing problem, where all pickup operations must be performed before any delivery operation because the pickup-and-delivery areas are geographically separated. The vehicle collects items in the pickup area and loads them into its container, a horizontal stack. After performing all pickup operations, the vehicle begins delivering the items in the delivery area. Loading and unloading operations must obey a partial last-in-first-out (LIFO) policy, that is, a version of the LIFO policy that may be violated within a given reloading depth. The objective of the DTSPPL is to minimize the total cost, which involves the total distance traveled by the vehicle and the number of items that are unloaded and then reloaded due to violations of the standard LIFO policy. We formally describe the DTSPPL through two integer linear programming (ILP) formulations and propose a heuristic algorithm based on the biased random-key genetic algorithm (BRKGA) to find high-quality solutions. The performance of the proposed solution approaches is assessed over a broad set of instances. Computational results have shown that both ILP formulations have been able to solve only the smaller instances, whereas the BRKGA obtained good-quality solutions for almost all instances, requiring short computational times

    An online packing heuristic for the three-dimensional container loading problem in dynamic environments and the Physical Internet

    Get PDF
    In this paper, we consider the online three-dimensional container loading problem. We develop a novel online packing algorithm to solve the three-dimensional bin packing problem in the online case where items are not know well in advance and they have to be packed in real-time when they ar-rive. This is relevant in many real-world scenarios such as automated cargo loading in warehouses. This is also relevant in the new logistics model of Physical Internet. The effectiveness of the online packing heuristic is evalu-ated on a set of generated data. The experimental results show that the algo-rithm could solve the 3D container loading problems in online fashion and is competitive against other algorithms both in the terms of running time, space utilization and number of bins

    Three-Dimensional Container Loading: A Simulated Annealing Approach

    Get PDF
    High utilization of cargo volume is an essential factor in the success of modern enterprises in the market. Although mathematical models have been presented for container loading problems in the literature, there is still a lack of studies that consider practical constraints. In this paper, a Mixed Integer Linear Programming is developed for the problem of packing a subset of rectangular boxes inside a container such that the total value of the packed boxes is maximized while some realistic constraints, such as vertical stability, are considered. The packing is orthogonal, and the boxes can be freely rotated into any of the six orientations. Moreover, a sequence triple-based solution methodology is proposed, simulated annealing is used as modeling technique, and the situation where some boxes are preplaced in the container is investigated. These preplaced boxes represent potential obstacles. Numerical experiments are conducted for containers with and without obstacles. The results show that the simulated annealing approach is successful and can handle large number of packing instances

    Internet of Things in urban waste collection

    Get PDF
    Nowadays, the waste collection management has an important role in urban areas. This paper faces this issue and proposes the application of a metaheuristic for the optimization of a weekly schedule and routing of the waste collection activities in an urban area. Differently to several contributions in literature, fixed periodic routes are not imposed. The results significantly improve the performance of the company involved, both in terms of resources used and costs saving

    A biased random-key genetic algorithm for the capacitated minimum spanning tree problem

    Get PDF
    This paper focuses on the capacitated minimum spanning tree(CMST)problem.Given a central processor and a set of remote terminals with specified demands for traffic that must flow between the central processor and terminals,the goal is to design a minimum cost network to carry this demand. Potential links exist between any pair of terminals and between the central processor and the terminals. Each potential link can be included in the design at a given cost.The CMST problem is to design a minimum-cost network connecting the terminals with the central processor so that the flow on any arc of the network is at most Q. A biased random-keygenetic algorithm(BRKGA)is a metaheuristic for combinatorial optimization which evolves a population of random vectors that encode solutions to the combinatorial optimization problem.This paper explores several solution encodings as well as different strategies for some steps of the algorithm and finally proposes a BRKGA heuristic for the CMST problem. Computational experiments are presented showing the effectivenes sof the approach:Seven newbest- known solutions are presented for the set of benchmark instances used in the experiments.Peer ReviewedPostprint (author’s final draft

    Mathematical models and heuristic algorithms for routing problems with multiple interacting components.

    Get PDF
    Programa de P?s-Gradua??o em Ci?ncia da Computa??o. Departamento de Ci?ncia da Computa??o, Instituto de Ci?ncias Exatas e Biol?gicas, Universidade Federal de Ouro Preto.Muitos problemas de otimiza??o com aplica??es reais t?m v?rios componentes de intera??o. Cada um deles pode ser um problema pertencente ? classe N P-dif?cil, e eles podem estar em conflito um com o outro, ou seja, a solu??o ?tima para um componente n?o representa necessariamente uma solu??o ?tima para os outros componentes. Isso pode ser um desafio devido ? influ?ncia que cada componente tem na qualidade geral da solu??o. Neste trabalho, foram abordados quatro problemas de roteamento complexos com v?rios componentes de intera??o: o Double Vehicle Routing Problem with Multiple Stacks (DVRPMS), o Double Traveling Salesman Problem with Partial Last-InFirst-Out Loading Constraints (DTSPPL), o Traveling Thief Problem (TTP) e Thief Orienteering Problem (ThOP). Enquanto os DVRPMS e TTP j? s?o bem conhecidos na literatura, os DTSPPL e ThOP foram recentemente propostos a fim de introduzir e estudar variantes mais realistas dos DVRPMS e TTP, respectivamente. O DTSPPL foi proposto a partir deste trabalho, enquanto o ThOP foi proposto de forma independente. Neste trabalho s?o propostos modelos matem?ticos e/ou algoritmos heur?sticos para a solu??o desses problemas. Dentre os resultados alcan?ados, ? poss?vel destacar que o modelo matem?tico proposto para o DVRPMS foi capaz de encontrar inconsist?ncias nos resultados dos algoritmos exatos previamente propostos na literatura. Al?m disso, conquistamos o primeiro e o segundo lugares em duas recentes competi??es de otimiza??o combinat?ria que tinha como objetivo a solu??o de uma vers?o bi-objetiva do TTP. Em geral, os resultados alcan?ados por nossos m?todos de solu??es mostraram-se melhores do que os apresentados anteriormente na literatura considerando cada problema investigado neste trabalho.I would like to express my greatest thanks to my parents, Jo?o Batista and Adelma, and my sister, Jaqueline, for their wise counsel. They have always supported me and given me the strength to continue towards my goals. To Bruna Vilela, I am grateful for her fondness, for always listening to my complaints, and for celebrating with me my personal and academic achievements. I love you all demais da conta1 ! Throughout the writing of this thesis, I have received great assistance. I would like to acknowledge my advisors, Prof. Ph.D. Marcone J. F. Souza, and Prof. Ph.D. Andr? G. Santos, for their support and guidance over these years. I would also like to thank all the authors who have contributed to the research papers produced from this work, in particular, to Prof. Ph.D. Markus Wagner for his great collaboration in some of my projects. I would like to thank Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior (CAPES), and Universidade Federal de Ouro Preto (UFOP) for funding this project. I thank the Universidade Federal de Vi?osa (UFV) for receiving me as a collaborating researcher over these last two years. I could not but offer up my thanks to the HassoPlattner-Institut (HPI) Future SOC Lab, the Divis?o de Suporte ao Desenvolvimento Cient?fico e Tecnol?gico (DCT/UFV), and the Programa de P?s-gradua??o em Ci?ncia da Computa??o (PPGCC/UFOP) for enabling this research by providing access to their computing infrastructure
    • …
    corecore