3,203 research outputs found

    Real-time detection of moving crowds using spatio-temporal data streams

    Get PDF
    Over the last decade we have seen a tremendous change in Location Based Services. From primitive reactive applications, explicitly invoked by users, they have evolved into modern complex proactive systems, that are able to automatically provide information based on context and user location. This was caused by the rapid development of outdoor and indoor positioning technologies. GPS modules, which are now included almost into every device, together with indoor technologies, based on WiFi fingerprinting or Bluetooth beacons, allow to determine the user location almost everywhere and at any time. This also led to an enormous growth of spatio-temporal data. Being very efficient using user-centric approach for a single target current Location Based Services remain quite primitive in the area of a multitarget knowledge extraction. This is rather surprising, taking into consideration the data availability and current processing technologies. Discovering useful information from the location of multiple objects is from one side limited by legal issues related to privacy and data ownership. From the other side, mining group location data over time is not a trivial task and require special algorithms and technologies in order to be effective. Recent development in data processing area has led to a huge shift from batch processing offline engines, like MapReduce, to real-time distributed streaming frameworks, like Apache Flink or Apache Spark, which are able to process huge amounts of data, including spatio-temporal datastreams. This thesis presents a system for detecting and analyzing crowds in a continuous spatio-temporal data stream. The aim of the system is to provide relevant knowledge in terms of proactive LBS. The motivation comes from the fact of constant spatio-temporal data growth and recent rapid technological development to process such data

    Distributed mining of convoys in large scale datasets

    Get PDF
    Tremendous increase in the use of the mobile devices equipped with the GPS and other location sensors has resulted in the generation of a huge amount of movement data. In recent years, mining this data to understand the collective mobility behavior of humans, animals and other objects has become popular. Numerous mobility patterns, or their mining algorithms have been proposed, each representing a specific movement behavior. Convoy pattern is one such pattern which can be used to find groups of people moving together in public transport or to prevent traffic jams. A convoy is a set of at least m objects moving together for at least k consecutive time stamps where m and k are user-defined parameters. Existing algorithms for detecting convoy patterns do not scale to real-life dataset sizes. Therefore in this paper, we propose a generic distributed convoy pattern mining algorithm called DCM and show how such an algorithm can be implemented using the MapReduce framework. We present a cost model for DCM and a detailed theoretical analysis backed by experimental results. We show the effect of partition size on the performance of DCM. The results from our experiments on different data-sets and hardware setups, show that our distributed algorithm is scalable in terms of data size and number of nodes, and more efficient than any existing sequential as well as distributed convoy pattern mining algorithm, showing speed-ups of up to 16 times over SPARE, the state of the art distributed co-movement pattern mining framework. DCM is thus able to process large datasets which SPARE is unable to.SCOPUS: ar.jDecretOANoAutActifinfo:eu-repo/semantics/publishe

    Técnicas de agrupamento de trajetórias com aplicação à recomendação de percursos

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaO uso generalizado de dispositivos capazes de obter e transmitir dados sobre a localização de objetos ao longo do tempo tem permitido recolher grandes volumes de dados espácio-temporais. Por isso, tem-se assistido a uma procura crescente de técnicas e ferramentas para a análise de grandes volumes de dados espácio-temporais com o intuito de disponibilizar uma gama variada de serviços baseados na localização. Esta dissertação centra-se no desenvolvimento de um sistema para recomendaSr trajetos com base em dados históricos sobre a localização de objetos móveis ao longo do tempo. O principal problema estudado neste trabalho consiste no agrupamento de trajetórias e na extração de informação a partir dos grupos de trajetórias. Este estudo, não se restringe a dados provenientes apenas de veículos, podendo ser aplicado a outros tipos de trajetórias, por exemplo, percursos realizados por pessoas a pé ou de bicicleta. O agrupamento baseia-se numa medida de similaridade. A extração de informação consiste em criar uma trajetória representativa para cada grupo de trajetórias. As trajetórias representativas podem ser visualizadas usando uma aplicação web, sendo também possível configurar cada módulo do sistema com parâmetros desejáveis, na sua maioria distâncias limiares. Por fim, são apresentados casos de teste para avaliar o desempenho global do sistema desenvolvido.The widespread use of devices to capture and transmit data about the location of objects over time allows collecting large volumes of spatio-temporal data. Consequently, there has been in recent years a growing demand for tools and techniques to analyze large volumes of spatio-temporal data aiming at providing a wide range of location-based services. This dissertation focuses on the development of a system for recommendation of trajectories based on historical data about the location of moving objects over time. The main issues covered in this work are trajectory clustering and extracting information from trajectory clusters. This study is not restricted to data from vehicles and can also be applied to other kinds of trajectories, for example, the movement of runners or bikes. The clustering is based on a similarity measure. The information extraction consists in creating a representative trajectory for the trajectories clusters. Finally, representative trajectories are displayed using a web application and it is also possible to configure each system module with desired parameters, mostly distance thresholds. Finally, case studies are presented to evaluate the developed system

    Privacy preservation in social media environments using big data

    Get PDF
    With the pervasive use of mobile devices, social media, home assistants, and smart devices, the idea of individual privacy is fading. More than ever, the public is giving up personal information in order to take advantage of what is now considered every day conveniences and ignoring the consequences. Even seemingly harmless information is making headlines for its unauthorized use (18). Among this data is user trajectory data which can be described as a user\u27s location information over a time period (6). This data is generated whenever users access their devices to record their location, query the location of a point of interest, query directions to get to a location, request services to come to their location, and many other applications. This data could be used by a malicious adversary to track a user\u27s movements, location, daily patterns, and learn details personal to the user. While the best course of action would be to hide this information entirely, this data can be used for many beneficial purposes as well. Emergency vehicles could be more efficiently routed based on trajectory patterns, businesses could make intelligent marketing or building decisions, and users themselves could benefit by taking advantage of more conveniences. There are several challenges to publishing this data while also preserving user privacy. For example, while location data has good utility, users expect their data to be private. For real world applications, users generate many terabytes of data every day. To process this volume of data for later use and anonymize it in order to hide individual user identities, this thesis presents an efficient algorithm to change the processing time for anonymization from days, as seen in (20), to a matter of minutes or hours. We cannot focus just on location data, however. Social media has a great many uses, one of which being the sharing of images. Privacy cannot stop with location, but must reach to other data as well. This thesis addresses the issue of image privacy in this work, as often images can be even more sensitive than location --Abstract, page iv

    Colossal Trajectory Mining: A unifying approach to mine behavioral mobility patterns

    Get PDF
    Spatio-temporal mobility patterns are at the core of strategic applications such as urban planning and monitoring. Depending on the strength of spatio-temporal constraints, different mobility patterns can be defined. While existing approaches work well in the extraction of groups of objects sharing fine-grained paths, the huge volume of large-scale data asks for coarse-grained solutions. In this paper, we introduce Colossal Trajectory Mining (CTM) to efficiently extract heterogeneous mobility patterns out of a multidimensional space that, along with space and time dimensions, can consider additional trajectory features (e.g., means of transport or activity) to characterize behavioral mobility patterns. The algorithm is natively designed in a distributed fashion, and the experimental evaluation shows its scalability with respect to the involved features and the cardinality of the trajectory dataset

    k/2-hop: Fast Mining of Convoy Patterns With Effective Pruning

    Get PDF
    With the increase of devices equipped with location sensors, mining spatio-temporal data for interesting behavioral patterns has gained attention in recent years. One of such well-known patterns is the convoy pattern which can be used, e.g. to find groups of people moving together in public transport or to prevent traffic jams. A convoy consists of at least m objects moving together for at least k consecutive time instants where m and k are user-defined parameters. Convoy mining is an expensive task and existing sequential algorithms do not scale to real-life dataset sizes. Existing sequential as well as parallel algorithms require a complex set of data-dependent parameters which are hard to set and tune. Therefore, in this paper, we propose a new fast exact sequential convoy pattern mining algorithm \k/2-hop" that is free of data-dependent parameters. The proposed algorithm processes the data corresponding to a few specific key timestamps at each step and quickly prunes objects with no possibility of forming a convoy. Thus, only a very small portion of the complete dataset is considered for mining convoys. Our experimental results show that k/2-hop outperforms existing sequential as well as parallel convoy pattern mining algorithms by orders of magnitude, and scales to larger datasets which existing algorithms fail on.SCOPUS: cp.pDecretOANoAutActifinfo:eu-repo/semantics/publishe

    Acta Cybernetica : Volume 15. Number 2.

    Get PDF
    corecore