144,317 research outputs found

    A new graph perspective on max-min fairness in Gaussian parallel channels

    Full text link
    In this work we are concerned with the problem of achieving max-min fairness in Gaussian parallel channels with respect to a general performance function, including channel capacity or decoding reliability as special cases. As our central results, we characterize the laws which determine the value of the achievable max-min fair performance as a function of channel sharing policy and power allocation (to channels and users). In particular, we show that the max-min fair performance behaves as a specialized version of the Lovasz function, or Delsarte bound, of a certain graph induced by channel sharing combinatorics. We also prove that, in addition to such graph, merely a certain 2-norm distance dependent on the allowable power allocations and used performance functions, is sufficient for the characterization of max-min fair performance up to some candidate interval. Our results show also a specific role played by odd cycles in the graph induced by the channel sharing policy and we present an interesting relation between max-min fairness in parallel channels and optimal throughput in an associated interference channel.Comment: 41 pages, 8 figures. submitted to IEEE Transactions on Information Theory on August the 6th, 200

    Eigenvalue Dynamics of a Central Wishart Matrix with Application to MIMO Systems

    Full text link
    We investigate the dynamic behavior of the stationary random process defined by a central complex Wishart (CW) matrix W(t){\bf{W}}(t) as it varies along a certain dimension tt. We characterize the second-order joint cdf of the largest eigenvalue, and the second-order joint cdf of the smallest eigenvalue of this matrix. We show that both cdfs can be expressed in exact closed-form in terms of a finite number of well-known special functions in the context of communication theory. As a direct application, we investigate the dynamic behavior of the parallel channels associated with multiple-input multiple-output (MIMO) systems in the presence of Rayleigh fading. Studying the complex random matrix that defines the MIMO channel, we characterize the second-order joint cdf of the signal-to-noise ratio (SNR) for the best and worst channels. We use these results to study the rate of change of MIMO parallel channels, using different performance metrics. For a given value of the MIMO channel correlation coefficient, we observe how the SNR associated with the best parallel channel changes slower than the SNR of the worst channel. This different dynamic behavior is much more appreciable when the number of transmit (NTN_T) and receive (NRN_R) antennas is similar. However, as NTN_T is increased while keeping NRN_R fixed, we see how the best and worst channels tend to have a similar rate of change.Comment: 15 pages, 9 figures and 1 table. This work has been accepted for publication at IEEE Trans. Inf. Theory. Copyright (c) 2014 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to [email protected]

    Zero-Delay Rate Distortion via Filtering for Vector-Valued Gaussian Sources

    Full text link
    We deal with zero-delay source coding of a vector-valued Gauss-Markov source subject to a mean-squared error (MSE) fidelity criterion characterized by the operational zero-delay vector-valued Gaussian rate distortion function (RDF). We address this problem by considering the nonanticipative RDF (NRDF) which is a lower bound to the causal optimal performance theoretically attainable (OPTA) function and operational zero-delay RDF. We recall the realization that corresponds to the optimal "test-channel" of the Gaussian NRDF, when considering a vector Gauss-Markov source subject to a MSE distortion in the finite time horizon. Then, we introduce sufficient conditions to show existence of solution for this problem in the infinite time horizon. For the asymptotic regime, we use the asymptotic characterization of the Gaussian NRDF to provide a new equivalent realization scheme with feedback which is characterized by a resource allocation (reverse-waterfilling) problem across the dimension of the vector source. We leverage the new realization to derive a predictive coding scheme via lattice quantization with subtractive dither and joint memoryless entropy coding. This coding scheme offers an upper bound to the operational zero-delay vector-valued Gaussian RDF. When we use scalar quantization, then for "r" active dimensions of the vector Gauss-Markov source the gap between the obtained lower and theoretical upper bounds is less than or equal to 0.254r + 1 bits/vector. We further show that it is possible when we use vector quantization, and assume infinite dimensional Gauss-Markov sources to make the previous gap to be negligible, i.e., Gaussian NRDF approximates the operational zero-delay Gaussian RDF. We also extend our results to vector-valued Gaussian sources of any finite memory under mild conditions. Our theoretical framework is demonstrated with illustrative numerical experiments.Comment: 32 pages, 9 figures, published in IEEE Journal of Selected Topics in Signal Processin
    • …
    corecore