1,356 research outputs found

    A Parallel Histogram-based Particle Filter for Object Tracking on SIMD-based Smart Cameras

    Get PDF
    We present a parallel implementation of a histogram-based particle filter for object tracking on smart cameras based on SIMD processors. We specifically focus on parallel computation of the particle weights and parallel construction of the feature histograms since these are the major bottlenecks in standard implementations of histogram-based particle filters. The proposed algorithm can be applied with any histogram-based feature sets—we show in detail how the parallel particle filter can employ simple color histograms as well as more complex histograms of oriented gradients (HOG). The algorithm was successfully implemented on an SIMD processor and performs robust object tracking at up to 30 frames per second—a performance difficult to achieve even on a modern desktop computer

    Configurable 3D-integrated focal-plane sensor-processor array architecture

    Get PDF
    A mixed-signal Cellular Visual Microprocessor architecture with digital processors is described. An ASIC implementation is also demonstrated. The architecture is composed of a regular sensor readout circuit array, prepared for 3D face-to-face type integration, and one or several cascaded array of mainly identical (SIMD) processing elements. The individual array elements derived from the same general HDL description and could be of different in size, aspect ratio, and computing resources

    Hierarchical stack filtering : a bitplane-based algorithm for massively parallel processors

    Get PDF
    With the development of novel parallel architectures for image processing, the implementation of well-known image operators needs to be reformulated to take advantage of the so-called massive parallelism. In this work, we propose a general algorithm that implements a large class of nonlinear filters, called stack filters, with a 2D-array processor. The proposed method consists of decomposing an image into bitplanes with the bitwise decomposition, and then process every bitplane hierarchically. The filtered image is reconstructed by simply stacking the filtered bitplanes according to their order of significance. Owing to its hierarchical structure, our algorithm allows us to trade-off between image quality and processing time, and to significantly reduce the computation time of low-entropy images. Also, experimental tests show that the processing time of our method is substantially lower than that of classical methods when using large structuring elements. All these features are of interest to a variety of real-time applications based on morphological operations such as video segmentation and video enhancement

    Parallel stereo vision algorithm

    Get PDF
    Integrating a stereo-photogrammetric robot head into a real-time system requires software solutions that rapidly resolve the stereo correspondence problem. The stereo-matcher presented in this paper uses therefore code parallelisation and was tested on three different processors with x87 and AVX. The results show that a 5mega pixels colour image can be matched in 5,55 seconds or as monochrome in 3,3 seconds

    Form Factor Improvement of Smart-Pixels for Vision Sensors through 3-D Vertically- Integrated Technologies

    Get PDF
    While conventional CMOS active pixel sensors embed only the circuitry required for photo-detection, pixel addressing and voltage buffering, smart pixels incorporate also circuitry for data processing, data storage and control of data interchange. This additional circuitry enables data processing be realized concurrently with the acquisition of images which is instrumental to reduce the number of data needed to carry to information contained into images. This way, more efficient vision systems can be built at the cost of larger pixel pitch. Vertically-integrated 3D technologies enable to keep the advnatges of smart pixels while improving the form factor of smart pixels.Office of Naval Research N000141110312Ministerio de Ciencia e InnovaciĂłn IPT-2011-1625-43000

    In the quest of vision-sensors-on-chip: Pre-processing sensors for data reduction

    Get PDF
    This paper shows that the implementation of vision systems benefits from the usage of sensing front-end chips with embedded pre-processing capabilities - called CVIS. Such embedded pre-processors reduce the number of data to be delivered for ulterior processing. This strategy, which is also adopted by natural vision systems, relaxes system-level requirements regarding data storage and communications and enables highly compact and fast vision systems. The paper includes several proof-o-concept CVIS chips with embedded pre-processing and illustrate their potential advantages. © 2017, Society for Imaging Science and Technology.Office of Naval Research (USA) N00014-14-1-0355Ministerio de Economía y Competitiviad TEC2015-66878-C3-1-R, TEC2015-66878-C3-3-RJunta de Andalucía 2012 TIC 233

    An IoT Endpoint System-on-Chip for Secure and Energy-Efficient Near-Sensor Analytics

    Full text link
    Near-sensor data analytics is a promising direction for IoT endpoints, as it minimizes energy spent on communication and reduces network load - but it also poses security concerns, as valuable data is stored or sent over the network at various stages of the analytics pipeline. Using encryption to protect sensitive data at the boundary of the on-chip analytics engine is a way to address data security issues. To cope with the combined workload of analytics and encryption in a tight power envelope, we propose Fulmine, a System-on-Chip based on a tightly-coupled multi-core cluster augmented with specialized blocks for compute-intensive data processing and encryption functions, supporting software programmability for regular computing tasks. The Fulmine SoC, fabricated in 65nm technology, consumes less than 20mW on average at 0.8V achieving an efficiency of up to 70pJ/B in encryption, 50pJ/px in convolution, or up to 25MIPS/mW in software. As a strong argument for real-life flexible application of our platform, we show experimental results for three secure analytics use cases: secure autonomous aerial surveillance with a state-of-the-art deep CNN consuming 3.16pJ per equivalent RISC op; local CNN-based face detection with secured remote recognition in 5.74pJ/op; and seizure detection with encrypted data collection from EEG within 12.7pJ/op.Comment: 15 pages, 12 figures, accepted for publication to the IEEE Transactions on Circuits and Systems - I: Regular Paper

    A versatile sensor interface for programmable vision systems-on-chip

    Get PDF
    This paper describes an optical sensor interface designed for a programmable mixed-signal vision chip. This chip has been designed and manufactured in a standard 0.35ÎŒm n-well CMOS technology with one poly layer and five metal layers. It contains a digital shell for control and data interchange, and a central array of 128 × 128 identical cells, each cell corresponding to a pixel. Die size is 11.885 × 12.230mm2 and cell size is 75.7ÎŒm × 73.3ÎŒm. Each cell contains 198 transistors dedicated to functions like processing, storage, and sensing. The system is oriented to real-time, single-chip image acquisition and processing. Since each pixel performs the basic functions of sensing, processing and storage, data transferences are fully parallel (image-wide). The programmability of the processing functions enables the realization of complex image processing functions based on the sequential application of simpler operations. This paper provides a general overview of the system architecture and functionality, with special emphasis on the optical interface.European Commission IST-1999-19007Office of Naval Research (USA) N00014021088

    CMOS Vision Sensors: Embedding Computer Vision at Imaging Front-Ends

    Get PDF
    CMOS Image Sensors (CIS) are key for imaging technol-ogies. These chips are conceived for capturing opticalscenes focused on their surface, and for delivering elec-trical images, commonly in digital format. CISs may incor-porate intelligence; however, their smartness basicallyconcerns calibration, error correction and other similartasks. The term CVISs (CMOS VIsion Sensors) definesother class of sensor front-ends which are aimed at per-forming vision tasks right at the focal plane. They havebeen running under names such as computational imagesensors, vision sensors and silicon retinas, among others. CVIS and CISs are similar regarding physical imple-mentation. However, while inputs of both CIS and CVISare images captured by photo-sensors placed at thefocal-plane, CVISs primary outputs may not be imagesbut either image features or even decisions based on thespatial-temporal analysis of the scenes. We may hencestate that CVISs are more “intelligent” than CISs as theyfocus on information instead of on raw data. Actually,CVIS architectures capable of extracting and interpretingthe information contained in images, and prompting reac-tion commands thereof, have been explored for years inacademia, and industrial applications are recently ramp-ing up.One of the challenges of CVISs architects is incorporat-ing computer vision concepts into the design flow. Theendeavor is ambitious because imaging and computervision communities are rather disjoint groups talking dif-ferent languages. The Cellular Nonlinear Network Univer-sal Machine (CNNUM) paradigm, proposed by Profs.Chua and Roska, defined an adequate framework forsuch conciliation as it is particularly well suited for hard-ware-software co-design [1]-[4]. This paper overviewsCVISs chips that were conceived and prototyped at IMSEVision Lab over the past twenty years. Some of them fitthe CNNUM paradigm while others are tangential to it. Allthem employ per-pixel mixed-signal processing circuitryto achieve sensor-processing concurrency in the quest offast operation with reduced energy budget.Junta de Andalucía TIC 2012-2338Ministerio de Economía y Competitividad TEC 2015-66878-C3-1-R y TEC 2015-66878-C3-3-

    The paper has been withdrawn

    Get PDF
    • 

    corecore