114,416 research outputs found

    OPTIMIZATION APPROACHES TO MPI AND AREA MERGING-BASED PARALLEL BUFFER ALGORITHM

    Get PDF
    On buffer zone construction, the rasterization-based dilation method inevitablyintroduces errors, and the double-sided parallel line method involves a series ofcomplex operations. In this paper, we proposed a parallel buffer algorithm based onarea merging and MPI (Message Passing Interface) to improve the performances ofbuffer analyses on processing large datasets. Experimental results reveal that thereare three major performance bottlenecks which significantly impact the serial andparallel buffer construction efficiencies, including the area merging strategy, thetask load balance method and the MPI inter-process results merging strategy.Corresponding optimization approaches involving tree-like area merging strategy, the vertex number oriented parallel task partition method and the inter-processresults merging strategy were suggested to overcome these bottlenecks. Experimentswere carried out to examine the performance efficiency of the optimized parallelalgorithm. The estimation results suggested that the optimization approaches couldprovide high performance and processing ability for buffer construction in a clusterparallel environment. Our method could provide insights into the parallelization ofspatial analysis algorithm

    Bigger Buffer k-d Trees on Multi-Many-Core Systems

    Get PDF
    A buffer k-d tree is a k-d tree variant for massively-parallel nearest neighbor search. While providing valuable speed-ups on modern many-core devices in case both a large number of reference and query points are given, buffer k-d trees are limited by the amount of points that can fit on a single device. In this work, we show how to modify the original data structure and the associated workflow to make the overall approach capable of dealing with massive data sets. We further provide a simple yet efficient way of using multiple devices given in a single workstation. The applicability of the modified framework is demonstrated in the context of astronomy, a field that is faced with huge amounts of data

    Bigger Buffer k-d Trees on Multi-Many-Core Systems

    Get PDF
    A buffer k-d tree is a k-d tree variant for massively-parallel nearest neighbor search. While providing valuable speed-ups on modern many-core devices in case both a large number of reference and query points are given, buffer k-d trees are limited by the amount of points that can fit on a single device. In this work, we show how to modify the original data structure and the associated workflow to make the overall approach capable of dealing with massive data sets. We further provide a simple yet efficient way of using multiple devices given in a single workstation. The applicability of the modified framework is demonstrated in the context of astronomy, a field that is faced with huge amounts of data

    B+-tree Index Optimization by Exploiting Internal Parallelism of Flash-based Solid State Drives

    Full text link
    Previous research addressed the potential problems of the hard-disk oriented design of DBMSs of flashSSDs. In this paper, we focus on exploiting potential benefits of flashSSDs. First, we examine the internal parallelism issues of flashSSDs by conducting benchmarks to various flashSSDs. Then, we suggest algorithm-design principles in order to best benefit from the internal parallelism. We present a new I/O request concept, called psync I/O that can exploit the internal parallelism of flashSSDs in a single process. Based on these ideas, we introduce B+-tree optimization methods in order to utilize internal parallelism. By integrating the results of these methods, we present a B+-tree variant, PIO B-tree. We confirmed that each optimization method substantially enhances the index performance. Consequently, PIO B-tree enhanced B+-tree's insert performance by a factor of up to 16.3, while improving point-search performance by a factor of 1.2. The range search of PIO B-tree was up to 5 times faster than that of the B+-tree. Moreover, PIO B-tree outperformed other flash-aware indexes in various synthetic workloads. We also confirmed that PIO B-tree outperforms B+-tree in index traces collected inside the Postgresql DBMS with TPC-C benchmark.Comment: VLDB201

    Parallel Working-Set Search Structures

    Full text link
    In this paper we present two versions of a parallel working-set map on p processors that supports searches, insertions and deletions. In both versions, the total work of all operations when the map has size at least p is bounded by the working-set bound, i.e., the cost of an item depends on how recently it was accessed (for some linearization): accessing an item in the map with recency r takes O(1+log r) work. In the simpler version each map operation has O((log p)^2+log n) span (where n is the maximum size of the map). In the pipelined version each map operation on an item with recency r has O((log p)^2+log r) span. (Operations in parallel may have overlapping span; span is additive only for operations in sequence.) Both data structures are designed to be used by a dynamic multithreading parallel program that at each step executes a unit-time instruction or makes a data structure call. To achieve the stated bounds, the pipelined data structure requires a weak-priority scheduler, which supports a limited form of 2-level prioritization. At the end we explain how the results translate to practical implementations using work-stealing schedulers. To the best of our knowledge, this is the first parallel implementation of a self-adjusting search structure where the cost of an operation adapts to the access sequence. A corollary of the working-set bound is that it achieves work static optimality: the total work is bounded by the access costs in an optimal static search tree.Comment: Authors' version of a paper accepted to SPAA 201

    Parallel Finger Search Structures

    Get PDF
    In this paper we present two versions of a parallel finger structure FS on p processors that supports searches, insertions and deletions, and has a finger at each end. This is to our knowledge the first implementation of a parallel search structure that is work-optimal with respect to the finger bound and yet has very good parallelism (within a factor of O(log p)^2) of optimal). We utilize an extended implicit batching framework that transparently facilitates the use of FS by any parallel program P that is modelled by a dynamically generated DAG D where each node is either a unit-time instruction or a call to FS. The work done by FS is bounded by the finger bound F_L (for some linearization L of D), i.e. each operation on an item with distance r from a finger takes O(log r+1) amortized work. Running P using the simpler version takes O((T_1+F_L)/p + T_infty + d * ((log p)^2 + log n)) time on a greedy scheduler, where T_1, T_infty are the size and span of D respectively, and n is the maximum number of items in FS, and d is the maximum number of calls to FS along any path in D. Using the faster version, this is reduced to O((T_1+F_L)/p + T_infty + d *(log p)^2 + s_L) time, where s_L is the weighted span of D where each call to FS is weighted by its cost according to F_L. FS can be extended to a fixed number of movable fingers. The data structures in our paper fit into the dynamic multithreading paradigm, and their performance bounds are directly composable with other data structures given in the same paradigm. Also, the results can be translated to practical implementations using work-stealing schedulers
    corecore