1,742 research outputs found

    Event-based neuromorphic stereo vision

    Full text link

    The importance of space and time in neuromorphic cognitive agents

    Full text link
    Artificial neural networks and computational neuroscience models have made tremendous progress, allowing computers to achieve impressive results in artificial intelligence (AI) applications, such as image recognition, natural language processing, or autonomous driving. Despite this remarkable progress, biological neural systems consume orders of magnitude less energy than today's artificial neural networks and are much more agile and adaptive. This efficiency and adaptivity gap is partially explained by the computing substrate of biological neural processing systems that is fundamentally different from the way today's computers are built. Biological systems use in-memory computing elements operating in a massively parallel way rather than time-multiplexed computing units that are reused in a sequential fashion. Moreover, activity of biological neurons follows continuous-time dynamics in real, physical time, instead of operating on discrete temporal cycles abstracted away from real-time. Here, we present neuromorphic processing devices that emulate the biological style of processing by using parallel instances of mixed-signal analog/digital circuits that operate in real time. We argue that this approach brings significant advantages in efficiency of computation. We show examples of embodied neuromorphic agents that use such devices to interact with the environment and exhibit autonomous learning

    Neuromorphic Computing Systems for Tactile Sensing Perception

    Get PDF
    Touch sensing plays an important role in humans daily life. Tasks like exploring, grasping and manipulating objects deeply rely on it. As such, Robots and hand prosthesis endowed with the sense of touch can better and more easily manipulate objects, and physically collaborate with other agents. Towards this goal, information about touched objects and surfaces has to be inferred from raw data coming from the sensors. The orientation of edges, which is employed as a pre-processing stage in both artificial vision and touch, is a key indication for object discrimination. Inspired on the encoding of edges in human first-order tactile afferents, we developed a biologically inspired, spiking models architecture that mimics human tactile perception with computational primitives that are implementable on low-power subthreshold neuromorphic hardware. The network architecture uses three layers of Leaky Integrate and Fire neurons to distinguish different edge orientations of a bar pressed on the artificial skin of the iCub robot. We demonstrated that the network architecture can learn the appropriate connectivity through unsupervised spike-based learning, and that the number and spatial distribution of sensitive areas within receptive fields are important in edge orientation discrimination. The unconstrained and random structure of the connectivity among layers can produce unbalanced activity in the output neurons, which are driven by a variable amount of synaptic inputs. We explored two different mechanisms of synaptic normalization (weights normalization and homeostasis), defining how this can be useful during the learning phase and inference phase. The network is successfully able to discriminate between 35 orientations of 36 (0 degree to 180 degree with 5 degree step increments) with homeostasis and weights normalization mechanism. Besides edge orientation discrimination, we modified the network architecture to be able to classify six different touch modalities (e.g. poke, press, grab, squeeze, push, and rolling a wheel). We demonstrated the ability of the network to learn appropriate connectivity patterns for the classification, achieving a total accuracy of 88.3 %. Furthermore, another application scenario on the tactile object shapes recognition has been considered because of its importance in robotic manipulation. We illustrated that the network architecture with 2 layers of spiking neurons was able to discriminate the tactile object shapes with accuracy 100 %, after integrating to it an array of 160 piezoresistive tactile sensors where the object shapes are applied

    Intelligent flight control systems

    Get PDF
    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms

    Biologically inspired composite image sensor for deep field target tracking

    Get PDF
    The use of nonuniform image sensors in mobile based computer vision applications can be an effective solution when computational burden is problematic. Nonuniform image sensors are still in their infancy and as such have not been fully investigated for their unique qualities nor have they been extensively applied in practice. In this dissertation a system has been developed that can perform vision tasks in both the far field and the near field. In order to accomplish this, a new and novel image sensor system has been developed. Inspired by the biological aspects of the visual systems found in both falcons and primates, a composite multi-camera sensor was constructed. The sensor provides for expandable visual range, excellent depth of field, and produces a single compact output image based on the log-polar retinal-cortical mapping that occurs in primates. This mapping provides for scale and rotational tolerant processing which, in turn, supports the mitigation of perspective distortion found in strict Cartesian based sensor systems. Furthermore, the scale-tolerant representation of objects moving on trajectories parallel to the sensor\u27s optical axis allows for fast acquisition and tracking of objects moving at high rates of speed. In order to investigate how effective this combination would be for object detection and tracking at both near and far field, the system was tuned for the application of vehicle detection and tracking from a moving platform. Finally, it was shown that the capturing of license plate information in an autonomous fashion could easily be accomplished from the extraction of information contained in the mapped log-polar representation space. The novel composite log-polar deep-field image sensor opens new horizons for computer vision. This current work demonstrates features that can benefit applications beyond the high-speed vehicle tracking for drivers assistance and license plate capture. Some of the future applications envisioned include obstacle detection for high-speed trains, computer assisted aircraft landing, and computer assisted spacecraft docking

    Hardware Implementation of a Visual-Motion Pixel Using Oriented Spatiotemporal Neural Filters

    Get PDF
    A pixel for measuring two-dimensional (2-D) visual motion with two one-dimensional (1-D) detectors has been implemented in very large scale integration. Based on the spatiotemporal feature extraction model of Adelson and Bergen, the pixel is realized using a general-purpose analog neural computer and a silicon retina. Because the neural computer only offers sum-and-threshold neurons, the Adelson and Bergen\u27s model is modified. The quadratic nonlinearity is replaced with a full-wave rectification, while the contrast normalization is replaced with edge detection and thresholding. Motion is extracted in two dimensions by using two 1-D detectors with spatial smoothing orthogonal to the direction of motion. Analysis shows that our pixel, although it has some limitations, has much lower hardware complexity compared to the full 2-D model. It also produces more accurate results and has a reduced aperture problem compared to the two 1-D model with no smoothing. Real-time velocity is represented as a distribution of activity of the 18 X and 18 Y velocity-tuned neural filter
    corecore