204 research outputs found

    Nonisomorphic curves that become isomorphic over extensions of coprime degrees

    Get PDF
    We show that one can find two nonisomorphic curves over a field K that become isomorphic to one another over two finite extensions of K whose degrees over K are coprime to one another. More specifically, let K_0 be an arbitrary prime field and let r and s be integers greater than 1 that are coprime to one another. We show that one can find a finite extension K of K_0, a degree-r extension L of K, a degree-s extension M of K, and two curves C and D over K such that C and D become isomorphic to one another over L and over M, but not over any proper subextensions of L/K or M/K. We show that such C and D can never have genus 0, and that if K is finite, C and D can have genus 1 if and only if {r,s} = {2,3} and K is an odd-degree extension of F_3. On the other hand, when {r,s}={2,3} we show that genus-2 examples occur in every characteristic other than 3. Our detailed analysis of the case {r,s} = {2,3} shows that over every finite field K there exist nonisomorphic curves C and D that become isomorphic to one another over the quadratic and cubic extensions of K. Most of our proofs rely on Galois cohomology. Without using Galois cohomology, we show that two nonisomorphic genus-0 curves over an arbitrary field remain nonisomorphic over every odd-degree extension of the base field.Comment: LaTeX, 32 pages. Further references added to the discussion in Section 1

    Generalized resolution for orthogonal arrays

    Full text link
    The generalized word length pattern of an orthogonal array allows a ranking of orthogonal arrays in terms of the generalized minimum aberration criterion (Xu and Wu [Ann. Statist. 29 (2001) 1066-1077]). We provide a statistical interpretation for the number of shortest words of an orthogonal array in terms of sums of R2R^2 values (based on orthogonal coding) or sums of squared canonical correlations (based on arbitrary coding). Directly related to these results, we derive two versions of generalized resolution for qualitative factors, both of which are generalizations of the generalized resolution by Deng and Tang [Statist. Sinica 9 (1999) 1071-1082] and Tang and Deng [Ann. Statist. 27 (1999) 1914-1926]. We provide a sufficient condition for one of these to attain its upper bound, and we provide explicit upper bounds for two classes of symmetric designs. Factor-wise generalized resolution values provide useful additional detail.Comment: Published in at http://dx.doi.org/10.1214/14-AOS1205 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore