2,622 research outputs found

    Calipso: Physics-based Image and Video Editing through CAD Model Proxies

    Get PDF
    We present Calipso, an interactive method for editing images and videos in a physically-coherent manner. Our main idea is to realize physics-based manipulations by running a full physics simulation on proxy geometries given by non-rigidly aligned CAD models. Running these simulations allows us to apply new, unseen forces to move or deform selected objects, change physical parameters such as mass or elasticity, or even add entire new objects that interact with the rest of the underlying scene. In Calipso, the user makes edits directly in 3D; these edits are processed by the simulation and then transfered to the target 2D content using shape-to-image correspondences in a photo-realistic rendering process. To align the CAD models, we introduce an efficient CAD-to-image alignment procedure that jointly minimizes for rigid and non-rigid alignment while preserving the high-level structure of the input shape. Moreover, the user can choose to exploit image flow to estimate scene motion, producing coherent physical behavior with ambient dynamics. We demonstrate Calipso's physics-based editing on a wide range of examples producing myriad physical behavior while preserving geometric and visual consistency.Comment: 11 page

    Fast Simulation of Skin Sliding

    Get PDF
    Skin sliding is the phenomenon of the skin moving over underlying layers of fat, muscle and bone. Due to the complex interconnections between these separate layers and their differing elasticity properties, it is difficult to model and expensive to compute. We present a novel method to simulate this phenomenon at real--time by remeshing the surface based on a parameter space resampling. In order to evaluate the surface parametrization, we borrow a technique from structural engineering known as the force density method which solves for an energy minimizing form with a sparse linear system. Our method creates a realistic approximation of skin sliding in real--time, reducing texture distortions in the region of the deformation. In addition it is flexible, simple to use, and can be incorporated into any animation pipeline

    deForm: An interactive malleable surface for capturing 2.5D arbitrary objects, tools and touch

    Get PDF
    We introduce a novel input device, deForm, that supports 2.5D touch gestures, tangible tools, and arbitrary objects through real-time structured light scanning of a malleable surface of interaction. DeForm captures high-resolution surface deformations and 2D grey-scale textures of a gel surface through a three-phase structured light 3D scanner. This technique can be combined with IR projection to allow for invisible capture, providing the opportunity for co-located visual feedback on the deformable surface. We describe methods for tracking fingers, whole hand gestures, and arbitrary tangible tools. We outline a method for physically encoding fiducial marker information in the height map of tangible tools. In addition, we describe a novel method for distinguishing between human touch and tangible tools, through capacitive sensing on top of the input surface. Finally we motivate our device through a number of sample applications

    Painterly rendering techniques: A state-of-the-art review of current approaches

    Get PDF
    In this publication we will look at the different methods presented over the past few decades which attempt to recreate digital paintings. While previous surveys concentrate on the broader subject of non-photorealistic rendering, the focus of this paper is firmly placed on painterly rendering techniques. We compare different methods used to produce different output painting styles such as abstract, colour pencil, watercolour, oriental, oil and pastel. Whereas some methods demand a high level of interaction using a skilled artist, others require simple parameters provided by a user with little or no artistic experience. Many methods attempt to provide more automation with the use of varying forms of reference data. This reference data can range from still photographs, video, 3D polygonal meshes or even 3D point clouds. The techniques presented here endeavour to provide tools and styles that are not traditionally available to an artist. Copyright © 2012 John Wiley & Sons, Ltd

    Determination of critical factors for fast and accurate 2D medical image deformation

    Get PDF
    The advent of medical imaging technology enabled physicians to study patient anatomy non-invasively and revolutionized the medical community. As medical images have become digitized and the resolution of these images has increased, software has been developed to allow physicians to explore their patients\u27 image studies in an increasing number of ways by allowing viewing and exploration of reconstructed three-dimensional models. Although this has been a boon to radiologists, who specialize in interpreting medical images, few software packages exist that provide fast and intuitive interaction for other physicians. In addition, although the users of these applications can view their patient data at the time the scan was taken, the placement of the tissues during a surgical intervention is often different due to the position of the patient and methods used to provide a better view of the surgical field. None of the commonly available medical image packages allow users to predict the deformation of the patient\u27s tissues under those surgical conditions. This thesis analyzes the performance and accuracy of a less computationally intensive yet physically-based deformation algorithm- the extended ChainMail algorithm. The proposed method allows users to load DICOM images from medical image studies, interactively classify the tissues in those images according to their properties under deformation, deform the tissues in two dimensions, and visualize the result. The method was evaluated using data provided by the Truth Cube experiment, where a phantom made of material with properties similar to liver under deformation was placed under varying amounts of uniaxial strain. CT scans were before and after the deformations. The deformation was performed on a single DICOM image from the study that had been manually classified as well as on data sets generated from that original image. These generated data sets were ideally segmented versions of the phantom images that had been scaled to varying fidelities in order to evaluate the effect of image size on the algorithm\u27s accuracy and execution time. Two variations of the extended ChainMail algorithm parameters were also implemented for each of the generated data sets in order to examine the effect of the parameters. The resultant deformations were compared with the actual deformations as determined by the Truth Cube experimenters. For both variations of the algorithm parameters, the predicted deformations at 5% uniaxial strain had an RMS error of a similar order of magnitude to the errors in a finite element analysis performed by the truth cube experimenters for the deformations at 18.25% strain. The average error was able to be reduced by approximately between 10-20% for the lower fidelity data sets through the use of one of the parameter schemes, although the benefit decreased as the image size increased. When the algorithm was evaluated under 18.25% strain, the average errors were more than 8 y times that of the errors in the finite element analysis. Qualitative analysis of the deformed images indicated differing degrees of accuracy across the ideal image set, with the largest displacements estimated closer to the initial point of deformation. This is hypothesized to be a result of the order in which deformation was processed for points in the image. The algorithm execution time was examined for the varying generated image fidelities. For a generated image that was approximately 18.5% of the size of the tissue in the original image, the execution time was less than 15 seconds. In comparison, the algorithm processing time for the full-scale image was over 3 y hours. The analysis of the extended ChainMail algorithm for use in medical image deformation emphasizes the importance of the choice of algorithm parameters on the accuracy of the deformations and of data set size on the processing time

    Stereoscopic Sketchpad: 3D Digital Ink

    Get PDF
    --Context-- This project looked at the development of a stereoscopic 3D environment in which a user is able to draw freely in all three dimensions. The main focus was on the storage and manipulation of the ‘digital ink’ with which the user draws. For a drawing and sketching package to be effective it must not only have an easy to use user interface, it must be able to handle all input data quickly and efficiently so that the user is able to focus fully on their drawing. --Background-- When it comes to sketching in three dimensions the majority of applications currently available rely on vector based drawing methods. This is primarily because the applications are designed to take a users two dimensional input and transform this into a three dimensional model. Having the sketch represented as vectors makes it simpler for the program to act upon its geometry and thus convert it to a model. There are a number of methods to achieve this aim including Gesture Based Modelling, Reconstruction and Blobby Inflation. Other vector based applications focus on the creation of curves allowing the user to draw within or on existing 3D models. They also allow the user to create wire frame type models. These stroke based applications bring the user closer to traditional sketching rather than the more structured modelling methods detailed. While at present the field is inundated with vector based applications mainly focused upon sketch-based modelling there are significantly less voxel based applications. The majority of these applications focus on the deformation and sculpting of voxmaps, almost the opposite of drawing and sketching, and the creation of three dimensional voxmaps from standard two dimensional pixmaps. How to actually sketch freely within a scene represented by a voxmap has rarely been explored. This comes as a surprise when so many of the standard 2D drawing programs in use today are pixel based. --Method-- As part of this project a simple three dimensional drawing program was designed and implemented using C and C++. This tool is known as Sketch3D and was created using a Model View Controller (MVC) architecture. Due to the modular nature of Sketch3Ds system architecture it is possible to plug a range of different data structures into the program to represent the ink in a variety of ways. A series of data structures have been implemented and were tested for efficiency. These structures were a simple list, a 3D array, and an octree. They have been tested for: the time it takes to insert or remove points from the structure; how easy it is to manipulate points once they are stored; and also how the number of points stored effects the draw and rendering times. One of the key issues brought up by this project was devising a means by which a user is able to draw in three dimensions while using only two dimensional input devices. The method settled upon and implemented involves using the mouse or a digital pen to sketch as one would in a standard 2D drawing package but also linking the up and down keyboard keys to the current depth. This allows the user to move in and out of the scene as they draw. A couple of user interface tools were also developed to assist the user. A 3D cursor was implemented and also a toggle, which when on, highlights all of the points intersecting the depth plane on which the cursor currently resides. These tools allow the user to see exactly where they are drawing in relation to previously drawn lines. --Results-- The tests conducted on the data structures clearly revealed that the octree was the most effective data structure. While not the most efficient in every area, it manages to avoid the major pitfalls of the other structures. The list was extremely quick to render and draw to the screen but suffered severely when it comes to finding and manipulating points already stored. In contrast the three dimensional array was able to erase or manipulate points effectively while the draw time rendered the structure effectively useless, taking huge amounts of time to draw each frame. The focus of this research was on how a 3D sketching package would go about storing and accessing the digital ink. This is just a basis for further research in this area and many issues touched upon in this paper will require a more in depth analysis. The primary area of this future research would be the creation of an effective user interface and the introduction of regular sketching package features such as the saving and loading of images
    corecore