152 research outputs found

    SymbioCity: Smart Cities for Smarter Networks

    Get PDF
    The "Smart City" (SC) concept revolves around the idea of embodying cutting-edge ICT solutions in the very fabric of future cities, in order to offer new and better services to citizens while lowering the city management costs, both in monetary, social, and environmental terms. In this framework, communication technologies are perceived as subservient to the SC services, providing the means to collect and process the data needed to make the services function. In this paper, we propose a new vision in which technology and SC services are designed to take advantage of each other in a symbiotic manner. According to this new paradigm, which we call "SymbioCity", SC services can indeed be exploited to improve the performance of the same communication systems that provide them with data. Suggestive examples of this symbiotic ecosystem are discussed in the paper. The dissertation is then substantiated in a proof-of-concept case study, where we show how the traffic monitoring service provided by the London Smart City initiative can be used to predict the density of users in a certain zone and optimize the cellular service in that area.Comment: 14 pages, submitted for publication to ETT Transactions on Emerging Telecommunications Technologie

    On the Feasibility of Utilizing Commercial 4G LTE Systems for Misson-Critical IoT Applications

    Full text link
    Emerging Internet of Things (IoT) applications and services including e-healthcare, intelligent transportation systems, smart grid, and smart homes to smart cities to smart workplace, are poised to become part of every aspect of our daily lives. The IoT will enable billions of sensors, actuators, and smart devices to be interconnected and managed remotely via the Internet. Cellular-based Machine-to-Machine (M2M) communications is one of the key IoT enabling technologies with huge market potential for cellular service providers deploying Long Term Evolution (LTE) networks. There is an emerging consensus that Fourth Generation (4G) and 5G cellular technologies will enable and support these applications, as they will provide the global mobile connectivity to the anticipated tens of billions of things/devices that will be attached to the Internet. Many vital utilities and service industries are considering the use of commercially available LTE cellular networks to provide critical connections to users, sensors, and smart M2M devices on their networks, due to its low cost and availability. Many of these emerging IoT applications are mission-critical with stringent requirements in terms of reliability and end-to-end (E2E) delay bound. The delay bound specified for each application refers to the device-to-device latencies, which is defined as the combined delay resulting from both application level processing time and communication latency. Each IoT application has its own distinct performance requirements in terms of latency, availability, and reliability. Typically, uplink (UL) traffic of most of these IoT applications is the dominant network traffic (much higher than total downlink (DL) traffic). Thus, efficient LTE UL scheduling algorithms at the base station (“Evolved NodeB (eNB)” per 3GPP standards) are more critical for M2M applications. LTE, however, was not originally intended for IoT applications, where traffic generated by M2M devices (running IoT applications) has totally different characteristics than those from traditional Human-to-Human (H2H)-based voice/video and data communications. In addition, due to the anticipated massive deployment of M2M devices and the limited available radio spectrum, the problem of efficient radio resources management (RRM) and UL scheduling poses a serious challenge in adopting LTE for M2M communications. Existing LTE quality of service (QoS) standard and UL scheduling algorithms were mainly optimized for H2H services and can’t accommodate such a wide range of diverging performance requirements of these M2M-based IoT applications. Though 4G LTE networks can support very low Packet Loss Ratio (PLR) at the physical layer, such reliability, however, comes at the expense of increased latency from tens to hundreds of ms due to the aggressive use of retransmission mechanisms. Current 4G LTE technologies may satisfy a single performance metric of these mission critical applications, but not the simultaneous support of ultra-high reliability and low latency as well as high data rates. Numerous QoS aware LTE UL scheduling algorithms for supporting M2M applications as well as H2H services have been reported in the literature. Most of these algorithms, however, were not intended for the support of mission critical IoT applications, as they are not latency-aware. In addition, these algorithms are simplified and don’t fully conform to LTE’s signaling and QoS standards. For instance, a common practice is the assumption that the time domain UL scheduler located at the eNB prioritizes user equipment (UEs)/M2M devices connection requests based on the head-of-line (HOL) packet waiting time at the UE/device transmission buffer. However, as will be detailed below, LTE standard does not support a mechanism that enables the UEs/devices to inform the eNB uplink scheduler about the waiting time of uplink packets residing in their transmission buffers. Ultra-Reliable Low-Latency Communication (URLLC) paradigm has recently emerged to enable a new range of mission-critical applications and services including industrial automation, real-time operation and control of the smart grid, inter-vehicular communications for improved safety and self-deriving vehicles. URLLC is one of the most innovative 5G New Radio (NR) features. URLLC and its supporting 5G NR technologies might become a commercial reality in the future, but it may be rather a distant future. Thus, deploying viable mission critical IoT applications will have to be postponed until URLLC and 5G NR technologies are commercially feasible. Because IoT applications, specifically mission critical, will have a significant impact on the welfare of all humanity, the immediate or near-term deployments of these applications is of utmost importance. It is the purpose of this thesis to explore whether current commercial 4G LTE cellular networks have the potential to support some of the emerging mission critical IoT applications. Smart grid is selected in this work as an illustrative IoT example because it is one of the most demanding IoT applications, as it includes diverse use cases ranging from mission-critical applications that have stringent requirements in terms of E2E latency and reliability to those that require support of massive number of connected M2M devices with relaxed latency and reliability requirements. The purpose of thesis is two fold: First, a user-friendly MATLAB-based open source software package to model commercial 4G LTE systems is developed. In contrast to mainstream commercial LTE software packages, the developed package is specifically tailored to accurately model mission critical IoT applications and above all fully conforms to commercial 4G LTE signaling and QoS standards. Second, utilizing the developed software package, we present a detailed realistic LTE UL performance analysis to assess the feasibility of commercial 4G LTE cellular networks when used to support such a diverse set of emerging IoT applications as well as typical H2H services

    Long Term Evolution-Advanced and Future Machine-to-Machine Communication

    Get PDF
    Long Term Evolution (LTE) has adopted Orthogonal Frequency Division Multiple Access (OFDMA) and Single Carrier Frequency Division Multiple Access (SC-FDMA) as the downlink and uplink transmission schemes respectively. Quality of Service (QoS) provisioning is one of the primary objectives of wireless network operators. In LTE-Advanced (LTE-A), several additional new features such as Carrier Aggregation (CA) and Relay Nodes (RNs) have been introduced by the 3rd Generation Partnership Project (3GPP). These features have been designed to deal with the ever increasing demands for higher data rates and spectral efficiency. The RN is a low power and low cost device designed for extending the coverage and enhancing spectral efficiency, especially at the cell edge. Wireless networks are facing a new challenge emerging on the horizon, the expected surge of the Machine-to-Machine (M2M) traffic in cellular and mobile networks. The costs and sizes of the M2M devices with integrated sensors, network interfaces and enhanced power capabilities have decreased significantly in recent years. Therefore, it is anticipated that M2M devices might outnumber conventional mobile devices in the near future. 3GPP standards like LTE-A have primarily been developed for broadband data services with mobility support. However, M2M applications are mostly based on narrowband traffic. These standards may not achieve overall spectrum and cost efficiency if they are utilized for serving the M2M applications. The main goal of this thesis is to take the advantage of the low cost, low power and small size of RNs for integrating M2M traffic into LTE-A networks. A new RN design is presented for aggregating and multiplexing M2M traffic at the RN before transmission over the air interface (Un interface) to the base station called eNodeB. The data packets of the M2M devices are sent to the RN over the Uu interface. Packets from different devices are aggregated at the Packet Data Convergence Protocol (PDCP) layer of the Donor eNodeB (DeNB) into a single large IP packet instead of several small IP packets. Therefore, the amount of overhead data can be significantly reduced. The proposed concept has been developed in the LTE-A network simulator to illustrate the benefits and advantages of the M2M traffic aggregation and multiplexing at the RN. The potential gains of RNs such as coverage enhancement, multiplexing gain, end-to-end delay performance etc. are illustrated with help of simulation results. The results indicate that the proposed concept improves the performance of the LTE-A network with M2M traffic. The adverse impact of M2M traffic on regular LTE-A traffic such as voice and file transfer is minimized. Furthermore, the cell edge throughput and QoS performance are enhanced. Moreover, the results are validated with the help of an analytical model

    Towards Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions

    Get PDF
    The ever-increasing number of resource-constrained Machine-Type Communication (MTC) devices is leading to the critical challenge of fulfilling diverse communication requirements in dynamic and ultra-dense wireless environments. Among different application scenarios that the upcoming 5G and beyond cellular networks are expected to support, such as eMBB, mMTC and URLLC, mMTC brings the unique technical challenge of supporting a huge number of MTC devices, which is the main focus of this paper. The related challenges include QoS provisioning, handling highly dynamic and sporadic MTC traffic, huge signalling overhead and Radio Access Network (RAN) congestion. In this regard, this paper aims to identify and analyze the involved technical issues, to review recent advances, to highlight potential solutions and to propose new research directions. First, starting with an overview of mMTC features and QoS provisioning issues, we present the key enablers for mMTC in cellular networks. Along with the highlights on the inefficiency of the legacy Random Access (RA) procedure in the mMTC scenario, we then present the key features and channel access mechanisms in the emerging cellular IoT standards, namely, LTE-M and NB-IoT. Subsequently, we present a framework for the performance analysis of transmission scheduling with the QoS support along with the issues involved in short data packet transmission. Next, we provide a detailed overview of the existing and emerging solutions towards addressing RAN congestion problem, and then identify potential advantages, challenges and use cases for the applications of emerging Machine Learning (ML) techniques in ultra-dense cellular networks. Out of several ML techniques, we focus on the application of low-complexity Q-learning approach in the mMTC scenarios. Finally, we discuss some open research challenges and promising future research directions.Comment: 37 pages, 8 figures, 7 tables, submitted for a possible future publication in IEEE Communications Surveys and Tutorial

    An Extensive Study on the Performance Evaluation and Scheduling of HeNBs

    Get PDF
    Since the dawn of mobile communication systems, reducing the cell size has been one option to increase the signal-to-interference-plus-noise ratio (SINR) in both links. The impact of this reduction can be perfectly understood by considering Shannon’s law. This work studies in detail the performance of Home eNBs (HeNBs), nodes with a smaller coverage area. After a detailed theoretical study of the SINR, a simulation approach is used to extract performance results in small cell indoor scenarios. Results corresponding to the goodput, delay and packet loss ratio are analyzed. Based on an improved version of LTE-Sim, the proportional fair, frame level scheduler (FLS) and exponential rule are tested in an indoor environment. With the saturation conditions taken into consideration, the FLS performs better than the other schedulers. This work shows that with the considered applications, it is possible to achieve a reduction in the transmitter power of HeNBs without compromising the small cell network performance.This work was supported by Foundation for Science and Technology/Ministry of Science, Technology and Higher Education (FCT/MCTES) through national funds and, when applicable, co-funded EU funds under the project UIDB/50008/2020, COST CA 15104 Inclusive Radio Communication Networks for 5G and Beyond (IRACON), Optical Radio Convergence Infrastructure for Communications and Power Delivering (ORCIP, 22141-01/SAICT/2016), TeamUp5G and CONQUEST (CMU/ECE/0030/2017). The TeamUp5G project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie project number 813391.info:eu-repo/semantics/publishedVersio

    A Survey of Scheduling in 5G URLLC and Outlook for Emerging 6G Systems

    Get PDF
    Future wireless communication is expected to be a paradigm shift from three basic service requirements of 5th Generation (5G) including enhanced Mobile Broadband (eMBB), Ultra Reliable and Low Latency communication (URLLC) and the massive Machine Type Communication (mMTC). Integration of the three heterogeneous services into a single system is a challenging task. The integration includes several design issues including scheduling network resources with various services. Specially, scheduling the URLLC packets with eMBB and mMTC packets need more attention as it is a promising service of 5G and beyond systems. It needs to meet stringent Quality of Service (QoS) requirements and is used in time-critical applications. Thus through understanding of packet scheduling issues in existing system and potential future challenges is necessary. This paper surveys the potential works that addresses the packet scheduling algorithms for 5G and beyond systems in recent years. It provides state of the art review covering three main perspectives such as decentralised, centralised and joint scheduling techniques. The conventional decentralised algorithms are discussed first followed by the centralised algorithms with specific focus on single and multi-connected network perspective. Joint scheduling algorithms are also discussed in details. In order to provide an in-depth understanding of the key scheduling approaches, the performances of some prominent scheduling algorithms are evaluated and analysed. This paper also provides an insight into the potential challenges and future research directions from the scheduling perspective

    Delay models for static and adaptive persistent resource allocations in wireless systems

    Get PDF
    A variety of scheduling strategies can be employed in wireless systems to satisfy different system objectives and to cater for different traffic types. Static persistent resource allocations can be employed to transfer small M2M data packets efficiently compared to dynamic packet-by-packet scheduling, even when the M2M traffic model is non-deterministic. Recently, adaptive persistent allocations have been proposed in which the volume of allocated resources can change in sympathy with the instantaneous queue size at the M2M device and without expensive signaling on control channels. This increases the efficiency of resource usage at the expense of a (typically small) increased packet delay. In this paper, we derive a statistical model for the device queue size and packet delay in static and adaptive persistent allocations which can be used for any arrival process (i.e., Poisson or otherwise). The primary motivation is to assist with dimensioning of persistent allocations given a set of QoS requirements (such as a prescribed delay budget). We validate the statistical model via comparison with queue size and delay statistics obtained from a discrete event simulation of a persistent allocation system. The validation is performed for both exponential and gamma distributed packet inter-arrivals to demonstrate the model generality

    Cellular networks for smart grid communication

    Get PDF
    The next-generation electric power system, known as smart grid, relies on a robust and reliable underlying communication infrastructure to improve the efficiency of electricity distribution. Cellular networks, e.g., LTE/LTE-A systems, appear as a promising technology to facilitate the smart grid evolution. Their inherent performance characteristics and well-established ecosystem could potentially unlock unprecedented use cases, enabling real-time and autonomous distribution grid operations. However, cellular technology was not originally intended for smart grid communication, associated with highly-reliable message exchange and massive device connectivity requirements. The fundamental differences between smart grid and human-type communication challenge the classical design of cellular networks and introduce important research questions that have not been sufficiently addressed so far. Motivated by these challenges, this doctoral thesis investigates novel radio access network (RAN) design principles and performance analysis for the seamless integration of smart grid traffic in future cellular networks. Specifically, we focus on addressing the fundamental RAN problems of network scalability in massive smart grid deployments and radio resource management for smart grid and human-type traffic. The main objective of the thesis lies on the design, analysis and performance evaluation of RAN mechanisms that would render cellular networks the key enabler for emerging smart grid applications. The first part of the thesis addresses the radio access limitations in LTE-based networks for reliable and scalable smart grid communication. We first identify the congestion problem in LTE random access that arises in large-scale smart grid deployments. To overcome this, a novel random access mechanism is proposed that can efficiently support real-time distribution automation services with negligible impact on the background traffic. Motivated by the stringent reliability requirements of various smart grid operations, we then develop an analytical model of the LTE random access procedure that allows us to assess the performance of event-based monitoring traffic under various load conditions and network configurations. We further extend our analysis to include the relation between the cell size and the availability of orthogonal random access resources and we identify an additional challenge for reliable smart grid connectivity. To this end, we devise an interference- and load-aware cell planning mechanism that enhances reliability in substation automation services. Finally, we couple the problem of state estimation in wide-area monitoring systems with the reliability challenges in information acquisition. Using our developed analytical framework, we quantify the impact of imperfect communication reliability in the state estimation accuracy and we provide useful insights for the design of reliability-aware state estimators. The second part of the thesis builds on the previous one and focuses on the RAN problem of resource scheduling and sharing for smart grid and human-type traffic. We introduce a novel scheduler that achieves low latency for distribution automation traffic while resource allocation is performed in a way that keeps the degradation of cellular users at a minimum level. In addition, we investigate the benefits of Device-to-Device (D2D) transmission mode for event-based message exchange in substation automation scenarios. We design a joint mode selection and resource allocation mechanism which results in higher data rates with respect to the conventional transmission mode via the base station. An orthogonal resource partition scheme between cellular and D2D links is further proposed to prevent the underutilization of the scarce cellular spectrum. The research findings of this thesis aim to deliver novel solutions to important RAN performance issues that arise when cellular networks support smart grid communication.Las redes celulares, p.e., los sistemas LTE/LTE-A, aparecen como una tecnología prometedora para facilitar la evolución de la próxima generación del sistema eléctrico de potencia, conocido como smart grid (SG). Sin embargo, la tecnología celular no fue pensada originalmente para las comunicaciones en la SG, asociadas con el intercambio fiable de mensajes y con requisitos de conectividad de un número masivo de dispositivos. Las diferencias fundamentales entre las comunicaciones en la SG y la comunicación de tipo humano desafían el diseño clásico de las redes celulares e introducen importantes cuestiones de investigación que hasta ahora no se han abordado suficientemente. Motivada por estos retos, esta tesis doctoral investiga los principios de diseño y analiza el rendimiento de una nueva red de acceso radio (RAN) que permita una integración perfecta del tráfico de la SG en las redes celulares futuras. Nos centramos en los problemas fundamentales de escalabilidad de la RAN en despliegues de SG masivos, y en la gestión de los recursos radio para la integración del tráfico de la SG con el tráfico de tipo humano. El objetivo principal de la tesis consiste en el diseño, el análisis y la evaluación del rendimiento de los mecanismos de las RAN que convertirán a las redes celulares en el elemento clave para las aplicaciones emergentes de las SGs. La primera parte de la tesis aborda las limitaciones del acceso radio en redes LTE para la comunicación fiable y escalable en SGs. En primer lugar, identificamos el problema de congestión en el acceso aleatorio de LTE que aparece en los despliegues de SGs a gran escala. Para superar este problema, se propone un nuevo mecanismo de acceso aleatorio que permite soportar de forma eficiente los servicios de automatización de la distribución eléctrica en tiempo real, con un impacto insignificante en el tráfico de fondo. Motivados por los estrictos requisitos de fiabilidad de las diversas operaciones en la SG, desarrollamos un modelo analítico del procedimiento de acceso aleatorio de LTE que nos permite evaluar el rendimiento del tráfico de monitorización de la red eléctrica basado en eventos bajo diversas condiciones de carga y configuraciones de red. Además, ampliamos nuestro análisis para incluir la relación entre el tamaño de celda y la disponibilidad de recursos de acceso aleatorio ortogonales, e identificamos un reto adicional para la conectividad fiable en la SG. Con este fin, diseñamos un mecanismo de planificación celular que tiene en cuenta las interferencias y la carga de la red, y que mejora la fiabilidad en los servicios de automatización de las subestaciones eléctricas. Finalmente, combinamos el problema de la estimación de estado en sistemas de monitorización de redes eléctricas de área amplia con los retos de fiabilidad en la adquisición de la información. Utilizando el modelo analítico desarrollado, cuantificamos el impacto de la baja fiabilidad en las comunicaciones sobre la precisión de la estimación de estado. La segunda parte de la tesis se centra en el problema de scheduling y compartición de recursos en la RAN para el tráfico de SG y el tráfico de tipo humano. Presentamos un nuevo scheduler que proporciona baja latencia para el tráfico de automatización de la distribución eléctrica, mientras que la asignación de recursos se realiza de un modo que mantiene la degradación de los usuarios celulares en un nivel mínimo. Además, investigamos los beneficios del modo de transmisión Device-to-Device (D2D) en el intercambio de mensajes basados en eventos en escenarios de automatización de subestaciones eléctricas. Diseñamos un mecanismo conjunto de asignación de recursos y selección de modo que da como resultado tasas de datos más elevadas con respecto al modo de transmisión convencional a través de la estación base. Finalmente, se propone un esquema de partición de recursos ortogonales entre enlaces celulares y D2Postprint (published version
    corecore