153,550 research outputs found

    An efficient two-parametric family with memory for nonlinear equations

    Full text link
    A new two-parametric family of derivative-free iterative methods for solving nonlinear equations is presented. First, a new biparametric family without memory of optimal order four is proposed. The improvement of the convergence rate of this family is obtained by using two self-accelerating parameters. These varying parameters are calculated in each iterative step employing only information from the current and the previous iteration. The corresponding R-order is 7 and the efficiency index 7(1/3) = 1.913. Numerical examples and comparison with some existing derivative-free optimal eighth-order schemes are included to confirm the theoretical results. In addition, the dynamical behavior of the designed method is analyzed and shows the stability of the scheme.The second author wishes to thank the Islamic Azad University, Hamedan Branch, where the paper was written as a part of the research plan, for financial support.Cordero Barbero, A.; Lotfi, T.; Bakhtiari, P.; Torregrosa Sánchez, JR. (2015). An efficient two-parametric family with memory for nonlinear equations. Numerical Algorithms. 68(2):323-335. doi:10.1007/s11075-014-9846-8S323335682Kung, H.T., Traub, J.F.: Optimal order of one-point and multi-point iteration. J. Assoc. Comput. Math. 21, 643–651 (1974)Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: A new technique to obtain derivative-free optimal iterative methods for solving nonlinear equation. J. Comput. Appl. Math. 252, 95–102 (2013)Cordero, A., Torregrosa, J.R., Vassileva, M.P.: Pseudocomposition: a technique to design predictor-corrector methods for systems of nonlinear equations. Appl. Math. Comput. 218, 11496–11508 (2012)Džunić, J.: On efficient two-parameter methods for solving nonlinear equations. Numer. Algorithms. 63(3), 549–569 (2013)Džunić, J., Petković, M.S.: On generalized multipoint root-solvers with memory. J. Comput. Appl. Math. 236, 2909–2920 (2012)Petković, M.S., Neta, B., Petković, L.D., Džunić, J. (ed.).: Multipoint methods for solving nonlinear equations. Elsevier (2013)Sharma, J.R., Sharma, R.: A new family of modified Ostrowski’s methods with accelerated eighth order convergence. Numer. Algorithms 54, 445–458 (2010)Soleymani, F., Shateyi, S.: Two optimal eighth-order derivative-free classes of iterative methods. Abstr. Appl. Anal. 2012(318165), 14 (2012). doi: 10.1155/2012/318165Soleymani, F., Sharma, R., Li, X., Tohidi, E.: An optimized derivative-free form of the Potra-Pták methods. Math. Comput. Model. 56, 97–104 (2012)Thukral, R.: Eighth-order iterative methods without derivatives for solving nonlinear equations. ISRN Appl. Math. 2011(693787), 12 (2011). doi: 10.5402/2011/693787Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, New York (1964)Wang, X., Džunić, J., Zhang, T.: On an efficient family of derivative free three-point methods for solving nonlinear equations. Appl. Math. Comput. 219, 1749–1760 (2012)Zheng, Q., Li, J., Huang, F.: An optimal Steffensen-type family for solving nonlinear equations. Appl. Math. Comput. 217, 9592–9597 (2011)Ortega, J.M., Rheinboldt, W.G. (ed.).: Iterative Solutions of Nonlinear Equations in Several Variables, Ed. Academic Press, New York (1970)Jay, I.O.: A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001)Blanchard, P.: Complex Analytic Dynamics on the Riemann Sphere. Bull. AMS 11(1), 85–141 (1984)Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods. arXiv: 1307.6705 [math.NA

    Targeted Maximum Likelihood Estimation using Exponential Families

    Get PDF
    Targeted maximum likelihood estimation (TMLE) is a general method for estimating parameters in semiparametric and nonparametric models. Each iteration of TMLE involves fitting a parametric submodel that targets the parameter of interest. We investigate the use of exponential families to define the parametric submodel. This implementation of TMLE gives a general approach for estimating any smooth parameter in the nonparametric model. A computational advantage of this approach is that each iteration of TMLE involves estimation of a parameter in an exponential family, which is a convex optimization problem for which software implementing reliable and computationally efficient methods exists. We illustrate the method in three estimation problems, involving the mean of an outcome missing at random, the parameter of a median regression model, and the causal effect of a continuous exposure, respectively. We conduct a simulation study comparing different choices for the parametric submodel, focusing on the first of these problems. To the best of our knowledge, this is the first study investigating robustness of TMLE to different specifications of the parametric submodel. We find that the choice of submodel can have an important impact on the behavior of the estimator in finite samples

    Model-based Boosting in R: A Hands-on Tutorial Using the R Package mboost

    Get PDF
    We provide a detailed hands-on tutorial for the R add-on package mboost. The package implements boosting for optimizing general risk functions utilizing component-wise (penalized) least squares estimates as base-learners for fitting various kinds of generalized linear and generalized additive models to potentially high-dimensional data. We give a theoretical background and demonstrate how mboost can be used to fit interpretable models of different complexity. As an example we use mboost to predict the body fat based on anthropometric measurements throughout the tutorial
    corecore