1,582 research outputs found

    Numerical solution of the modified equal width wave equation

    Get PDF
    Numerical solution of the modified equal width wave equation is obtained by using lumped Galerkin method based on cubic B-spline finite element method. Solitary wave motion and interaction of two solitary waves are studied using the proposed method. Accuracy of the proposed method is discussed by computing the numerical conserved laws L2 and L∞ error norms. The numerical results are found in good agreement with exact solution. A linear stability analysis of the scheme is also investigated

    Petrov galerkin method with cubic B splines for solving the MEW equation

    Get PDF
    In the present paper, we introduce a numerical solution algorithm based on a Petrov-Galerkin method in which the element shape functions are cubic B-splines and the weight functions quadratic B-splines . The motion of a single solitarywave and interaction of two solitarywaves are studied. Accuracy and efficiency of the proposed method are discussed by computing the numerical conserved laws and L2 , L¥ error norms. The obtained results show that the present method is a remarkably successful numerical technique for solving the modified equal width wave(MEW) equation. A linear stability analysis of the scheme shows that it is unconditionally stable

    Numerical investigations of shallow water waves via generalized equal width (GEW) equation

    Get PDF
    In this article, a mathematical model representing solution of the nonlinear generalized equal width (GEW) equation has been considered. Here we aim to investigate solutions of GEW equation using a numerical scheme by using sextic B-spline Subdomain finite element method. At first Galerkin finite element method is proposed and a priori bound has been established. Then a semi-discrete and a Crank-Nicolson Galerkin finite element approximation have been studied respectively. In addition to that a powerful Fourier series analysis has been performed and indicated that our method is unconditionally stable. Finally, proficiency and practicality of the method have been demonstrated by illustrating it on two important problems of the GEW equation including propagation of single solitons and collision of double solitary waves. The performance of the numerical algorithm has been demonstrated for the motion of single soliton by computing L∞ and L2 norms and for the other problem computing three invariant quantities I1, I2 and I3. The presented numerical algorithm has been compared with other established schemes and it is observed that the presented scheme is shown to be effectual and valid

    Numerical solutions of the generalized equal width wave equation using the Petrov–Galerkin method

    Get PDF
    In this article, we consider a generalized equal width wave (GEW) equation which is a significant nonlinear wave equation as it can be used to model many problems occurring in applied sciences. Here we study a Petrov–Galerkin method for the model problem, in which element shape functions are quadratic and weight functions are linear B-splines. We investigate the existence and uniqueness of solutions of the weak form of the equation. Then, we establish the theoretical bound of the error in the semi-discrete spatial scheme as well as of a full discrete scheme at t = t n. Furthermore, a powerful Fourier analysis has been applied to show that the proposed scheme is unconditionally stable. Finally, propagation of solitary waves and evolution of solitons are analyzed to demonstrate the efficiency and applicability of the proposed scheme. The three invariants (I1, I2 and I3) of motion have been commented to verify the conservation features of the proposed algorithms. Our proposed numerical scheme has been compared with other published schemes and demonstrated to be valid, effective and it outperforms the others

    Structures and waves in a nonlinear heat-conducting medium

    Full text link
    The paper is an overview of the main contributions of a Bulgarian team of researchers to the problem of finding the possible structures and waves in the open nonlinear heat conducting medium, described by a reaction-diffusion equation. Being posed and actively worked out by the Russian school of A. A. Samarskii and S.P. Kurdyumov since the seventies of the last century, this problem still contains open and challenging questions.Comment: 23 pages, 13 figures, the final publication will appear in Springer Proceedings in Mathematics and Statistics, Numerical Methods for PDEs: Theory, Algorithms and their Application

    Embedded discontinuous Galerkin transport schemes with localised limiters

    Get PDF
    Motivated by finite element spaces used for representation of temperature in the compatible finite element approach for numerical weather prediction, we introduce locally bounded transport schemes for (partially-)continuous finite element spaces. The underlying high-order transport scheme is constructed by injecting the partially-continuous field into an embedding discontinuous finite element space, applying a stable upwind discontinuous Galerkin (DG) scheme, and projecting back into the partially-continuous space; we call this an embedded DG scheme. We prove that this scheme is stable in L2 provided that the underlying upwind DG scheme is. We then provide a framework for applying limiters for embedded DG transport schemes. Standard DG limiters are applied during the underlying DG scheme. We introduce a new localised form of element-based flux-correction which we apply to limiting the projection back into the partially-continuous space, so that the whole transport scheme is bounded. We provide details in the specific case of tensor-product finite element spaces on wedge elements that are discontinuous P1/Q1 in the horizontal and continuous P2 in the vertical. The framework is illustrated with numerical tests

    Subdomain finite element method with quartic B-splines for the modified equal width wave equation

    Get PDF
    In this paper, a numerical solution of the modified equal width wave (MEW) equation, has been obtained by a numerical technique based on Subdomain finite element method with quartic Bsplines. Test problems including the motion of a single solitary wave and interaction of two solitary waves are studied to validate the suggested method. Accuracy and efficiency of the proposed method are discussed by computing the numerical conserved laws and error norms L2 and L∞. A linear stability analysis based on a Fourier method shows that the numerical scheme is unconditionally stable

    A numerical solution of the MEW equaiton using sextic B splines

    Get PDF
    In this article, a numerical solution of the modified equal width wave (MEW) equation, based on subdomain method using sextic B-spline is used to simulate the motion of single solitary wave and interaction of two solitary waves. The three invariants of the motion are calculated to determine the conservation properties of the system. L2 and L∞ error norms are used to measure differences between the analytical and numerical solutions. The obtained results are compared with some published numerical solutions. A linear stability analysis of the scheme is also investigate
    corecore