845 research outputs found

    Spectral methods for partial differential equations

    Get PDF
    Origins of spectral methods, especially their relation to the Method of Weighted Residuals, are surveyed. Basic Fourier, Chebyshev, and Legendre spectral concepts are reviewed, and demonstrated through application to simple model problems. Both collocation and tau methods are considered. These techniques are then applied to a number of difficult, nonlinear problems of hyperbolic, parabolic, elliptic, and mixed type. Fluid dynamical applications are emphasized

    Spectral collocation methods

    Get PDF
    This review covers the theory and application of spectral collocation methods. Section 1 describes the fundamentals, and summarizes results pertaining to spectral approximations of functions. Some stability and convergence results are presented for simple elliptic, parabolic, and hyperbolic equations. Applications of these methods to fluid dynamics problems are discussed in Section 2

    Spectral methods for CFD

    Get PDF
    One of the objectives of these notes is to provide a basic introduction to spectral methods with a particular emphasis on applications to computational fluid dynamics. Another objective is to summarize some of the most important developments in spectral methods in the last two years. The fundamentals of spectral methods for simple problems will be covered in depth, and the essential elements of several fluid dynamical applications will be sketched

    Numerical Treatment for the flow of Casson Fluid and heat transfer Model Over an Unsteady Stretching Surface in the Presence Of Internal Heat Generation/Absorption and Thermal Radiation

    Get PDF
    Several important industrial and engineering problems are very difficult to solve analytically since they are high nonlinear. The Chebyshev spectral collocation method possesses an ability to predict the solution behavior for a system of high nonlinear ordinary differential equations. This method which is based on differentiated Chebyshev polynomials is introduced to obtain an approximate solution to the system of ordinary differential equations which physically describe the flow and heat transfer problem of an unsteady Casson fluid model taking into consideration both heat generation and radiation effects in the temperature equation. Based on the spectral collocation method, the obtained solution is introduced numerically to various parameter values

    Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains

    Full text link
    Many PDEs involving fractional Laplacian are naturally set in unbounded domains with underlying solutions decay very slowly, subject to certain power laws. Their numerical solutions are under-explored. This paper aims at developing accurate spectral methods using rational basis (or modified mapped Gegenbauer functions) for such models in unbounded domains. The main building block of the spectral algorithms is the explicit representations for the Fourier transform and fractional Laplacian of the rational basis, derived from some useful integral identites related to modified Bessel functions. With these at our disposal, we can construct rational spectral-Galerkin and direct collocation schemes by pre-computing the associated fractional differentiation matrices. We obtain optimal error estimates of rational spectral approximation in the fractional Sobolev spaces, and analyze the optimal convergence of the proposed Galerkin scheme. We also provide ample numerical results to show that the rational method outperforms the Hermite function approach

    Spectral methods in general relativistic astrophysics

    Get PDF
    We present spectral methods developed in our group to solve three-dimensional partial differential equations. The emphasis is put on equations arising from astrophysical problems in the framework of general relativity.Comment: 51 pages, elsart (Elsevier Preprint), 19 PostScript figures, submitted to Journal of Computational & Applied Mathematic
    corecore