6,687 research outputs found

    Intercusp Geodesics and Cusp Shapes of Fully Augmented Links

    Full text link
    We study the geometry of fully augmented link complements in S3S^3 by looking at their link diagrams. We extend the method introduced by Thistlethwaite and Tsvietkova to fully augmented links and define a system of algebraic equations in terms of parameters coming from edges and crossings of the link diagrams. Combining it with the work of Purcell, we show that the solutions to these algebraic equations are related to the cusp shapes of fully augmented link complements. As an application we use the cusp shapes to study the commensurability classes of fully augmented links

    Pattern fluctuations in transitional plane Couette flow

    Full text link
    In wide enough systems, plane Couette flow, the flow established between two parallel plates translating in opposite directions, displays alternatively turbulent and laminar oblique bands in a given range of Reynolds numbers R. We show that in periodic domains that contain a few bands, for given values of R and size, the orientation and the wavelength of this pattern can fluctuate in time. A procedure is defined to detect well-oriented episodes and to determine the statistics of their lifetimes. The latter turn out to be distributed according to exponentially decreasing laws. This statistics is interpreted in terms of an activated process described by a Langevin equation whose deterministic part is a standard Landau model for two interacting complex amplitudes whereas the noise arises from the turbulent background.Comment: 13 pages, 11 figures. Accepted for publication in Journal of statistical physic

    An application of the finite differences method to a dynamical interface problem

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2004Includes bibliographical references (leaves: 41-43)Text in English; Abstract: Turkish and Englishviii, 49 leavesA multiple-order-parameter model for Cu-Au system on a face cubic centered lattice was recently developed in the presence of anisotropy. In that model, three order parameters (non-conserved) and one concentration order parameter (conserved), which has been taken as a constant, were considered. Later on, the model has been extended, so that, concentration has been taken as a variable. It has been seen that two models were in a good agreement near critical temperature since the non-conserved order parameter behaves like a constant near critical temperature in both models. Thus, we extended the rst model to a dynamical diffuse interface model near critical temperature. After writing the free energy of the system in terms of the order parameters, minimizing the energy with respect to the order parameters and Langevin equation yield the non-linear system of parabolic equations. The finite differences method was implemented to solve this non-linear system of parabolic equations. The forward difference discretization was applied for the rst derivative of the solution with respect to time and centered difference discretization was applied for the second order derivative of the solution with respect to spatial variable. We obtained stability criteria and nd the error bound. The orientation dependence proles, variation of interfacial energy and the effect of the degree of the anisotropy on the width of the diffuse interface are simulated when the time evolves

    Numerical solution of the eXtended Pom-Pom model for viscoelastic free surface flows

    Get PDF
    In this paper we present a finite difference method for solving two-dimensional viscoelastic unsteady free surface flows governed by the single equation version of the eXtended Pom-Pom (XPP) model. The momentum equations are solved by a projection method which uncouples the velocity and pressure fields. We are interested in low Reynolds number flows and, to enhance the stability of the numerical method, an implicit technique for computing the pressure condition on the free surface is employed. This strategy is invoked to solve the governing equations within a Marker-and-Cell type approach while simultaneously calculating the correct normal stress condition on the free surface. The numerical code is validated by performing mesh refinement on a two-dimensional channel flow. Numerical results include an investigation of the influence of the parameters of the XPP equation on the extrudate swelling ratio and the simulation of the Barus effect for XPP fluids

    On the use of quarter-point tetrahedral finite elements in linear elastic fracture mechanics

    Get PDF
    This paper discusses the reproduction of the square root singularity in quarter-point tetrahedral (QPT) finite elements. Numerical results confirm that the stress singularity is modeled accurately in a fully unstructured mesh by using QPTs. A displacement correlation (DC) scheme is proposed in combination with QPTs to compute stress intensity factors (SIF) from arbitrary meshes, yielding an average error of 2–3%. This straightforward method is computationally cheap and easy to implement. The results of an extensive parametric study also suggest the existence of an optimum mesh-dependent distance from the crack front at which the DC method computes the most accurate SIFs
    corecore