16,896 research outputs found

    Fully discrete finite element data assimilation method for the heat equation

    Get PDF
    We consider a finite element discretization for the reconstruction of the final state of the heat equation, when the initial data is unknown, but additional data is given in a sub domain in the space time. For the discretization in space we consider standard continuous affine finite element approximation, and the time derivative is discretized using a backward differentiation. We regularize the discrete system by adding a penalty of the H1H^1-semi-norm of the initial data, scaled with the mesh-parameter. The analysis of the method uses techniques developed in E. Burman and L. Oksanen, Data assimilation for the heat equation using stabilized finite element methods, arXiv, 2016, combining discrete stability of the numerical method with sharp Carleman estimates for the physical problem, to derive optimal error estimates for the approximate solution. For the natural space time energy norm, away from t=0t=0, the convergence is the same as for the classical problem with known initial data, but contrary to the classical case, we do not obtain faster convergence for the L2L^2-norm at the final time

    Inverse stochastic optimal controls

    Full text link
    We study an inverse problem of the stochastic optimal control of general diffusions with performance index having the quadratic penalty term of the control process. Under mild conditions on the drift, the volatility, the cost functions of the state, and under the assumption that the optimal control belongs to the interior of the control set, we show that our inverse problem is well-posed using a stochastic maximum principle. Then, with the well-posedness, we reduce the inverse problem to some root finding problem of the expectation of a random variable involved with the value function, which has a unique solution. Based on this result, we propose a numerical method for our inverse problem by replacing the expectation above with arithmetic mean of observed optimal control processes and the corresponding state processes. The recent progress of numerical analyses of Hamilton-Jacobi-Bellman equations enables the proposed method to be implementable for multi-dimensional cases. In particular, with the help of the kernel-based collocation method for Hamilton-Jacobi-Bellman equations, our method for the inverse problems still works well even when an explicit form of the value function is unavailable. Several numerical experiments show that the numerical method recover the unknown weight parameter with high accuracy

    A Fast Algorithm for Parabolic PDE-based Inverse Problems Based on Laplace Transforms and Flexible Krylov Solvers

    Full text link
    We consider the problem of estimating parameters in large-scale weakly nonlinear inverse problems for which the underlying governing equations is a linear, time-dependent, parabolic partial differential equation. A major challenge in solving these inverse problems using Newton-type methods is the computational cost associated with solving the forward problem and with repeated construction of the Jacobian, which represents the sensitivity of the measurements to the unknown parameters. Forming the Jacobian can be prohibitively expensive because it requires repeated solutions of the forward and adjoint time-dependent parabolic partial differential equations corresponding to multiple sources and receivers. We propose an efficient method based on a Laplace transform-based exponential time integrator combined with a flexible Krylov subspace approach to solve the resulting shifted systems of equations efficiently. Our proposed solver speeds up the computation of the forward and adjoint problems, thus yielding significant speedup in total inversion time. We consider an application from Transient Hydraulic Tomography (THT), which is an imaging technique to estimate hydraulic parameters related to the subsurface from pressure measurements obtained by a series of pumping tests. The algorithms discussed are applied to a synthetic example taken from THT to demonstrate the resulting computational gains of this proposed method
    • …
    corecore