9,509 research outputs found

    Fracture of solar-grade anisotropic polycrystalline Silicon: A combined phase field–cohesive zone model approach

    Get PDF
    Artículo Open Access en el sitio web del editor. Pago por publicar en abierto.This work presents a novel computational framework to simulate fracture events in brittle anisotropic polycrystalline materials at the microscopical level, with application to solar-grade polycrystalline Silicon. Quasi-static failure is modeled by combining the phase field approach of brittle fracture (for transgranular fracture) with the cohesive zone model for the grain boundaries (for intergranular fracture) through the generalization of the recent FE-based technique published in [M. Paggi, J. Reinoso, Comput. Methods Appl. Mech. Engrg., 31 (2017) 145–172] to deal with anisotropic polycrystalline microstructures. The proposed model, which accounts for any anisotropic constitutive tensor for the grains depending on their preferential orientation, as well as an orientation-dependent fracture toughness, allows to simulate intergranular and transgranular crack growths in an efficient manner, with or without initial defects. One of the advantages of the current variational method is the fact that complex crack patterns in such materials are triggered without any user-intervention, being possible to account for the competition between both dissipative phenomena. In addition, further aspects with regard to the model parameters identification are discussed in reference to solar cells images obtained from transmitted light source. A series of representative numerical simulations is carried out to highlight the interplay between the different types of fracture occurring in solar-grade polycrystalline Silicon, and to assess the role of anisotropy on the crack path and on the apparent tensile strength of the material.Unión Europea FP/2007–2013/ERC 306622Ministerio de Economía y Competitividad MAT2015–71036-P y MAT2015–71309-PJunta de Andalucía P11-TEP-7093 y P12-TEP- 105

    Parallelized Hybrid Monte Carlo Simulation of Stress-Induced Texture Evolution

    Full text link
    A parallelized hybrid Monte Carlo (HMC) methodology is devised to quantify the microstructural evolution of polycrystalline material under elastic loading. The approach combines a time explicit material point method (MPM) for the mechanical stresses with a calibrated Monte Carlo (cMC) model for grain boundary kinetics. The computed elastic stress generates an additional driving force for grain boundary migration. The paradigm is developed, tested, and subsequently used to quantify the effect of elastic stress on the evolution of texture in nickel polycrystals. As expected, elastic loading favors grains which appear softer with respect to the loading direction. The rate of texture evolution is also quantified, and an internal variable rate equation is constructed which predicts the time evolution of the distribution of orientations.Comment: 20 pages, 8 figure

    Optimal configuration of microstructure in ferroelectric materials by stochastic optimization

    Full text link
    An optimization procedure determining the ideal configuration at the microstructural level of ferroelectric (FE) materials is applied to maximize piezoelectricity. Piezoelectricity in ceramic FEs differ significantly from that of single crystals because of the presence of crystallites (grains) possessing crystallographic axes aligned imperfectly. The piezoelectric properties of a polycrystalline (ceramic) FE is inextricably related to the grain orientation distribution (texture). The set of combination of variables, known as solution space, which dictates the texture of a ceramic is unlimited and hence the choice of the optimal solution which maximizes the piezoelectricity is complicated. Thus a stochastic global optimization combined with homogenization is employed for the identification of the optimal granular configuration of the FE ceramic microstructure with optimum piezoelectric properties. The macroscopic equilibrium piezoelectric properties of polycrystalline FE is calculated using mathematical homogenization at each iteration step. The configuration of grains characterised by its orientations at each iteration is generated using a randomly selected set of orientation distribution parameters. Apparent enhancement of piezoelectric coefficient d33d_{33} is observed in an optimally oriented BaTiO3_3 single crystal. A configuration of crystallites, simultaneously constraining the orientation distribution of the c-axis (polar axis) while incorporating ab-plane randomness, which would multiply the overall piezoelectricity in ceramic BaTiO3_{3} is also identified. The orientation distribution of the c-axes is found to be a narrow Gaussian distribution centred around 45∘{45^\circ}. The piezoelectric coefficient in such a ceramic is found to be nearly three times as that of the single crystal.Comment: 11 pages, 7 figure

    Grain coarsening in two-dimensional phase-field models with an orientation field

    Full text link
    In the literature, contradictory results have been published regarding the form of the limiting (long-time) grain size distribution (LGSD) that characterizes the late stage grain coarsening in two-dimensional and quasi-two-dimensional polycrystalline systems. While experiments and the phase-field crystal (PFC) model (a simple dynamical density functional theory) indicate a lognormal distribution, other works including theoretical studies based on conventional phase-field simulations that rely on coarse grained fields, like the multi-phase-field (MPF) and orientation field (OF) models, yield significantly different distributions. In a recent work, we have shown that the coarse grained phase-field models (whether MPF or OF) yield very similar limiting size distributions that seem to differ from the theoretical predictions. Herein, we revisit this problem, and demonstrate in the case of OF models [by R. Kobayashi et al., Physica D 140, 141 (2000) and H. Henry et al. Phys. Rev. B 86, 054117 (2012)] that an insufficient resolution of the small angle grain boundaries leads to a lognormal distribution close to those seen in the experiments and the molecular scale PFC simulations. Our work indicates, furthermore, that the LGSD is critically sensitive to the details of the evaluation process, and raises the possibility that the differences among the LGSD results from different sources may originate from differences in the detection of small angle grain boundaries

    Review of the Synergies Between Computational Modeling and Experimental Characterization of Materials Across Length Scales

    Full text link
    With the increasing interplay between experimental and computational approaches at multiple length scales, new research directions are emerging in materials science and computational mechanics. Such cooperative interactions find many applications in the development, characterization and design of complex material systems. This manuscript provides a broad and comprehensive overview of recent trends where predictive modeling capabilities are developed in conjunction with experiments and advanced characterization to gain a greater insight into structure-properties relationships and study various physical phenomena and mechanisms. The focus of this review is on the intersections of multiscale materials experiments and modeling relevant to the materials mechanics community. After a general discussion on the perspective from various communities, the article focuses on the latest experimental and theoretical opportunities. Emphasis is given to the role of experiments in multiscale models, including insights into how computations can be used as discovery tools for materials engineering, rather than to "simply" support experimental work. This is illustrated by examples from several application areas on structural materials. This manuscript ends with a discussion on some problems and open scientific questions that are being explored in order to advance this relatively new field of research.Comment: 25 pages, 11 figures, review article accepted for publication in J. Mater. Sc
    • …
    corecore