3,239 research outputs found

    Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap

    Full text link
    This paper investigates the use of bootstrap-based bias correction of semi-parametric estimators of the long memory parameter in fractionally integrated processes. The re-sampling method involves the application of the sieve bootstrap to data pre-filtered by a preliminary semi-parametric estimate of the long memory parameter. Theoretical justification for using the bootstrap techniques to bias adjust log-periodogram and semi-parametric local Whittle estimators of the memory parameter is provided. Simulation evidence comparing the performance of the bootstrap bias correction with analytical bias correction techniques is also presented. The bootstrap method is shown to produce notable bias reductions, in particular when applied to an estimator for which analytical adjustments have already been used. The empirical coverage of confidence intervals based on the bias-adjusted estimators is very close to the nominal, for a reasonably large sample size, more so than for the comparable analytically adjusted estimators. The precision of inferences (as measured by interval length) is also greater when the bootstrap is used to bias correct rather than analytical adjustments.Comment: 38 page

    Higher-Order Improvements of the Sieve Bootstrap for Fractionally Integrated Processes

    Full text link
    This paper investigates the accuracy of bootstrap-based inference in the case of long memory fractionally integrated processes. The re-sampling method is based on the semi-parametric sieve approach, whereby the dynamics in the process used to produce the bootstrap draws are captured by an autoregressive approximation. Application of the sieve method to data pre-filtered by a semi-parametric estimate of the long memory parameter is also explored. Higher-order improvements yielded by both forms of re-sampling are demonstrated using Edgeworth expansions for a broad class of statistics that includes first- and second-order moments, the discrete Fourier transform and regression coefficients. The methods are then applied to the problem of estimating the sampling distributions of the sample mean and of selected sample autocorrelation coefficients, in experimental settings. In the case of the sample mean, the pre-filtered version of the bootstrap is shown to avoid the distinct underestimation of the sampling variance of the mean which the raw sieve method demonstrates in finite samples, higher order accuracy of the latter notwithstanding. Pre-filtering also produces gains in terms of the accuracy with which the sampling distributions of the sample autocorrelations are reproduced, most notably in the part of the parameter space in which asymptotic normality does not obtain. Most importantly, the sieve bootstrap is shown to reproduce the (empirically infeasible) Edgeworth expansion of the sampling distribution of the autocorrelation coefficients, in the part of the parameter space in which the expansion is valid

    Filtering Random Graph Processes Over Random Time-Varying Graphs

    Get PDF
    Graph filters play a key role in processing the graph spectra of signals supported on the vertices of a graph. However, despite their widespread use, graph filters have been analyzed only in the deterministic setting, ignoring the impact of stochastic- ity in both the graph topology as well as the signal itself. To bridge this gap, we examine the statistical behavior of the two key filter types, finite impulse response (FIR) and autoregressive moving average (ARMA) graph filters, when operating on random time- varying graph signals (or random graph processes) over random time-varying graphs. Our analysis shows that (i) in expectation, the filters behave as the same deterministic filters operating on a deterministic graph, being the expected graph, having as input signal a deterministic signal, being the expected signal, and (ii) there are meaningful upper bounds for the variance of the filter output. We conclude the paper by proposing two novel ways of exploiting randomness to improve (joint graph-time) noise cancellation, as well as to reduce the computational complexity of graph filtering. As demonstrated by numerical results, these methods outperform the disjoint average and denoise algorithm, and yield a (up to) four times complexity redution, with very little difference from the optimal solution

    CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral Filters

    Full text link
    The rise of graph-structured data such as social networks, regulatory networks, citation graphs, and functional brain networks, in combination with resounding success of deep learning in various applications, has brought the interest in generalizing deep learning models to non-Euclidean domains. In this paper, we introduce a new spectral domain convolutional architecture for deep learning on graphs. The core ingredient of our model is a new class of parametric rational complex functions (Cayley polynomials) allowing to efficiently compute spectral filters on graphs that specialize on frequency bands of interest. Our model generates rich spectral filters that are localized in space, scales linearly with the size of the input data for sparsely-connected graphs, and can handle different constructions of Laplacian operators. Extensive experimental results show the superior performance of our approach, in comparison to other spectral domain convolutional architectures, on spectral image classification, community detection, vertex classification and matrix completion tasks
    • …
    corecore