291 research outputs found

    RBF-Based QP Estimation Model for VBR Control in H.264/SVC

    Get PDF
    In this paper we propose a novel variable bit rate (VBR) controller for real-time H.264/scalable video coding (SVC) applications. The proposed VBR controller relies on the fact that consecutive pictures within the same scene often exhibit similar degrees of complexity, and consequently should be encoded using similar quantization parameter (QP) values for the sake of quality consistency. In oder to prevent unnecessary QP fluctuations, the proposed VBR controller allows for just an incremental variation of QP with respect to that of the previous picture, focusing on the design of an effective method for estimating this QP variation. The implementation in H.264/SVC requires to locate a rate controller at each dependency layer (spatial or coarse grain scalability). In particular, the QP increment estimation at each layer is computed by means of a radial basis function (RBF) network that is specially designed for this purpose. Furthermore, the RBF network design process was conceived to provide an effective solution for a wide range of practical real-time VBR applications for scalable video content delivery. In order to assess the proposed VBR controller, two real-time application scenarios were simulated: mobile live streaming and IPTV broadcast. It was compared to constant QP encoding and a recently proposed constant bit rate (CBR) controller for H.264/SVC. The experimental results show that the proposed method achieves remarkably consistent quality, outperforming the reference CBR controller in the two scenarios for all the spatio-temporal resolutions considered.Proyecto CCG10-UC3M/TIC-5570 de la Comunidad Autónoma de Madrid y Universidad Carlos III de MadridPublicad

    In-layer multi-buffer framework for rate-controlled scalable video coding

    Get PDF
    Temporal scalability is supported in scalable video coding (SVC) by means of hierarchical prediction structures, where the higher layers can be ignored for frame rate reduction. Nevertheless, this kind of scalability is not totally exploited by the rate control (RC) algorithms since the hypothetical reference decoder (HRD) requirement is only satisfied for the highest frame rate sub-stream of every dependency (spatial or coarse grain scalability) layer. In this paper we propose a novel RC approach that aims to deliver several HRD-compliant temporal resolutions within a particular dependency layer. Instead of using the common SVC encoder configuration consisting of a dependency layer per each temporal resolution, a compact configuration that does not require additional dependency layers for providing different HRD-compliant temporal resolutions is proposed. Specifically, the proposed framework for rate-controlled SVC uses a set of virtual buffers within a dependency layer so that their levels can be simultaneously controlled for overflow and underflow prevention while minimizing the reconstructed video distortion of the corresponding sub-streams. This in-layer multi-buffer approach has been built on top of a baseline H.264/SVC RC algorithm for variable bit rate applications. The experimental results show that our proposal achieves a good performance in terms of mean quality, quality consistency, and buffer control using a reduced number of layers.This work has been partially supported by the National Grant TEC2011-26807 of the Spanish Ministry of Science and Innovation.Publicad

    RBF-Based QP Estimation Model for VBR Control in H.264/SVC

    Full text link

    A two-level sliding-window VBR controller for real-time hierarchical video coding

    Get PDF
    In this paper, a novel rate control algorithm for real-time VBR hierarchical video coding is proposed. The algorithm works at two levels that are called long- and short-term levels. The long-term level aims at ensuring that the bit count does not exceed the maximum allowed amount for a few-second long window. To this end, it considers a sliding window spanning several GOPs, which is shifted on a GOP basis. In doing so, it avoids the potentially sharp adjustments at the end of the GOP that usually happen in non-sliding approaches. The short-term level aims to provide a proper QP adaptation to fit the target bit budget, which is dictated by the long-term level. It also uses a sliding window, which in this case extends over one GOP. The proposed algorithm has been assessed in realistic conditions for a variety of video sequences. It has been compared to both a constant quality and CBR hierarchical approaches, showing an excellent performance in terms of both rate-distortion and PSNR variation

    Lowpass Filtering of Rate-Distortion Functions for Quality Smoothing in Real-Time Video Communication

    Get PDF
    Digital Object Identifier 10.1109/TCSVT.2005.852417In variable-bit-rate (VBR) video coding, the video is pre-processed to collect sequence-level statistics, which are used for global bit allocation in the actual encoding stage to obtain a smoothed video presentation quality. However, in real-time video recording and network streaming, this type of two-pass encoding scheme is not allowed because the access to future frames and global statistics is not available. To address this issue, we introduce the concept of low-pass filtering of rate-distortion (R-D) functions and develop a smoothed rate control (SRC) framework for real-time video recording and streaming. Theoretically, we prove that, using a geometric averaging filter, the SRC algorithm is able to maintain a smoothed video presentation quality while achieving the target bit rate automatically. We also analyze the buffer requirement of the SRC algorithm in real-time video streaming, and propose a scheme to seamlessly integrate robust buffer control into the SRC framework. The proposed SRC algorithm has very low computational complexity and implementation cost. Our extensive experimental results demonstrate that the SRC algorithm significantly reduces the picture quality variation in the encoded video clips

    A rate control algorithm for scalable video coding

    Get PDF
    This thesis proposes a rate control (RC) algorithm for H.264/scalable video coding (SVC) specially designed for real-time variable bit rate (VBR) applications with buffer constraints. The VBR controller assumes that consecutive pictures within the same scene often exhibit similar degrees of complexity, and aims to prevent unnecessary quantization parameter (QP) fluctuations by allowing for just an incremental variation of QP with respect to that of the previous picture. In order to adapt this idea to H.264/SVC, a rate controller is located at each dependency layer (spatial or coarse grain scalability) so that each rate controller is responsible for determining the proper QP increment. Actually, one of the main contributions of the thesis is a QP increment regression model that is based on Gaussian processes. This model has been derived from some observations drawn from a discrete set of representative encoding states. Two real-time application scenarios were simulated to assess the performance of the VBR controller with respect to two well-known RC methods. The experimental results show that our proposal achieves an excellent performance in terms of quality consistency, buffer control, adjustment to the target bit rate, and computational complexity. Moreover, unlike typical RC algorithms for SVC that only satisfy the hypothetical reference decoder (HRD) constraints for the highest temporal resolution sub-stream of each dependency layer, the proposed VBR controller also delivers HRD-compliant sub-streams with lower temporal resolutions.To this end, a novel approach that uses a set of buffers (one per temporal resolution sub-stream) within a dependency layer has been built on top of the RC algorithm.The proposed approach aims to simultaneously control the buffer levels for overflow and underflow prevention, while maximizing the reconstructed video quality of the corresponding sub-streams. This in-layer multibuffer framework for rate-controlled SVC does not require additional dependency layers to deliver different HRD-compliant temporal resolutions for a given video source, thus improving the coding e ciency when compared to typical SVC encoder con gurations since, for the same target bit rate, less layers are encoded

    Robust and efficient video/image transmission

    Get PDF
    The Internet has become a primary medium for information transmission. The unreliability of channel conditions, limited channel bandwidth and explosive growth of information transmission requests, however, hinder its further development. Hence, research on robust and efficient delivery of video/image content is demanding nowadays. Three aspects of this task, error burst correction, efficient rate allocation and random error protection are investigated in this dissertation. A novel technique, called successive packing, is proposed for combating multi-dimensional (M-D) bursts of errors. A new concept of basis interleaving array is introduced. By combining different basis arrays, effective M-D interleaving can be realized. It has been shown that this algorithm can be implemented only once and yet optimal for a set of error bursts having different sizes for a given two-dimensional (2-D) array. To adapt to variable channel conditions, a novel rate allocation technique is proposed for FineGranular Scalability (FGS) coded video, in which real data based rate-distortion modeling is developed, constant quality constraint is adopted and sliding window approach is proposed to adapt to the variable channel conditions. By using the proposed technique, constant quality is realized among frames by solving a set of linear functions. Thus, significant computational simplification is achieved compared with the state-of-the-art techniques. The reduction of the overall distortion is obtained at the same time. To combat the random error during the transmission, an unequal error protection (UEP) method and a robust error-concealment strategy are proposed for scalable coded video bitstreams
    • …
    corecore