408 research outputs found

    12th International Conference on Vibrations in Rotating Machinery

    Get PDF
    Since 1976, the Vibrations in Rotating Machinery conferences have successfully brought industry and academia together to advance state-of-the-art research in dynamics of rotating machinery. 12th International Conference on Vibrations in Rotating Machinery contains contributions presented at the 12th edition of the conference, from industrial and academic experts from different countries. The book discusses the challenges in rotor-dynamics, rub, whirl, instability and more. The topics addressed include: - Active, smart vibration control - Rotor balancing, dynamics, and smart rotors - Bearings and seals - Noise vibration and harshness - Active and passive damping - Applications: wind turbines, steam turbines, gas turbines, compressors - Joints and couplings - Challenging performance boundaries of rotating machines - High power density machines - Electrical machines for aerospace - Management of extreme events - Active machines - Electric supercharging - Blades and bladed assemblies (forced response, flutter, mistuning) - Fault detection and condition monitoring - Rub, whirl and instability - Torsional vibration Providing the latest research and useful guidance, 12th International Conference on Vibrations in Rotating Machinery aims at those from industry or academia that are involved in transport, power, process, medical engineering, manufacturing or construction

    12th International Conference on Vibrations in Rotating Machinery

    Get PDF
    Since 1976, the Vibrations in Rotating Machinery conferences have successfully brought industry and academia together to advance state-of-the-art research in dynamics of rotating machinery. 12th International Conference on Vibrations in Rotating Machinery contains contributions presented at the 12th edition of the conference, from industrial and academic experts from different countries. The book discusses the challenges in rotor-dynamics, rub, whirl, instability and more. The topics addressed include: - Active, smart vibration control - Rotor balancing, dynamics, and smart rotors - Bearings and seals - Noise vibration and harshness - Active and passive damping - Applications: wind turbines, steam turbines, gas turbines, compressors - Joints and couplings - Challenging performance boundaries of rotating machines - High power density machines - Electrical machines for aerospace - Management of extreme events - Active machines - Electric supercharging - Blades and bladed assemblies (forced response, flutter, mistuning) - Fault detection and condition monitoring - Rub, whirl and instability - Torsional vibration Providing the latest research and useful guidance, 12th International Conference on Vibrations in Rotating Machinery aims at those from industry or academia that are involved in transport, power, process, medical engineering, manufacturing or construction

    Active vibration control of a flexible rotor by flexibly-mounted internal-stator magnetic actuators

    Get PDF

    Wind turbine drivetrains:State-of-the-art technologies and future development trends

    Get PDF
    This paper presents the state-of-the-art technologies and development trends of wind turbine drivetrains – the system that converts kinetic energy of the wind to electrical energy – in different stages of their life cycle: design, manufacturing, installation, operation, lifetime extension, decommissioning and recycling. Offshore development and digitalization are also a focal point in this study. Drivetrain in this context includes the whole power conversion system: main bearing, shafts, gearbox, generator and power converter. The main aim of this article is to review the drivetrain technology development as well as to identify future challenges and research gaps. The main challenges in drivetrain research identified in this paper include drivetrain dynamic responses in large or floating turbines, aerodynamic and farm control effects, use of rare-earth material in generators, improving reliability through prognostics, and use of advances in digitalization. These challenges illustrate the multidisciplinary aspect of wind turbine drivetrains, which emphasizes the need for more interdisciplinary research and collaboration

    Investigation into balancing of high-speed flexible shafts by compensating balancing sleeves

    Get PDF
    Engineers have been designing machines with long, flexible shafts and dealing with consequential vibration problems, caused by shaft imbalance since the beginning of the industrial revolution in the mid 1800’s. Modern machines still employ balancing techniques based on the Influence Coefficient or Modal Balancing methodologies, that were introduced in the 1930’s and 1950’s, respectively. The research presented in this thesis explores fundamental deficiencies of current trim balancing techniques and investigates novel methods of flexible attachment to provide a component of lateral compliance. Further, a new balancing methodology is established which utilizes trim balance induced bending moments to reduce shaft deflection by the application of compensating balancing sleeves. This methodology aims to create encastre simulation by closely matching the said balancing moments to the fixing moments of an equivalent, encastre mounted shaft. It is therefore significantly different to traditional methods which aim to counter-balance points of residual eccentricity by applying trim balance correction, usually at pre-set points, along a shaft. Potential benefits of this methodology are initially determined by analysis of a high-speed, simply supported, plain flexible shaft, with uniform eccentricity which shows that near elimination of the 1st lateral critical speed, (LCS) is possible, thereby allowing safe operation with much reduced LCS margins. Further study of concentrated, residual imbalances provides several new insights into the behaviour of the balancing sleeve concept: 1) a series of concentrated imbalances can be regarded simply as an equivalent level of uniform eccentricity, and balance sleeve compensation is equally applicable to a generalised unbalanced distribution consisting of any number of ii concentrated imbalances, 2) compensation depends on the sum of the applied balancing sleeve moments and can therefore be achieved using a single balancing sleeve (thereby simulating a single encastre shaft), 3) compensation of the 2nd critical speed, and to a lesser extent higher orders, is possible by use of two balancing sleeves, positioned at shaft ends, 4) the concept facilitates on-site commissioning of trim balance which requires a means of adjustment at only one end of the shaft, thereby reducing commissioning time, 5) the Reaction Ratio, RR (simply supported/ encastre) is independent of residual eccentricity, so that the implied benefits resulting from the ratio (possible reductions in the equivalent level of eccentricity) are additional to any balancing procedures undertaken prior to encastre simulation. The analysis shows that equivalent reductions of the order of 1/25th are possible. Experimental measurements from a scaled model of a typical drive coupling employed on an industrial gas turbine package, loaded asymmetrically with a concentrated point of imbalance, support this analysis and confirms the operating mechanism of balancing sleeve compensation and also it’s potential to vastly reduce shaft deflections/ reaction loads

    Second International Symposium on Magnetic Suspension Technology, part 2

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review related recent developments in sensors and controls approaches, superconducting magnet technology, and design/implementation practices, the 2nd International Symposium on Magnetic Suspension Technology was held at the Westin Hotel in Seattle, WA, on 11-13 Aug. 1993. The symposium included 18 technical sessions in which 44 papers were presented. The technical sessions covered the areas of bearings, bearing modelling, controls, vibration isolation, micromachines, superconductivity, wind tunnel magnetic suspension systems, magnetically levitated trains (MAGLEV), rotating machinery and energy storage, and applications. A list of attendees appears at the end of the document

    SIRM 2017

    Get PDF
    This volume contains selected papers presented at the 12th International Conference on vibrations in rotating machines, SIRM, which took place February 15-17, 2017 at the campus of the Graz University of Technology. By all meaningful measures, SIRM was a great success, attracting about 120 participants (ranging from senior colleagues to graduate students) from 14 countries. Latest trends in theoretical research, development, design and machine maintenance have been discussed between machine manufacturers, machine operators and scientific representatives in the field of rotor dynamics. SIRM 2017 included thematic sessions on the following topics: Rotordynamics, Stability, Friction, Monitoring, Electrical Machines, Torsional Vibrations, Blade Vibrations, Balancing, Parametric Excitation, and Bearings. The papers struck an admirable balance between theory, analysis, computation and experiment, thus contributing a richly diverse set of perspectives and methods to the audience of the conference
    • …
    corecore