439 research outputs found

    A novel three-class ROC method for eQTL analysis

    Get PDF
    The problem of identifying genetic factors underlying complex and quantitative traits such as height, weight and disease susceptibility in natural populations has become a major theme of research in recent years. Aiming at revealing the inter-dependency and causal relationship between the underlying genotypes and observed phenotypes, researchers from different areas have developed a variety of methods for expression quantitative trait loci (eQTL) mapping. Most of these methods rely on resampling-based algorithms that are computationally very expensive. To overcome the disadvantages of the current techniques, we propose a novel nonparametric method based on the volume under surface (VUS) within the framework of three-class receiver operating characteristic (ROC) analysis. With the fast algorithms developed, we can reduce the computation time of the genomewide analysis from several months down to several days. © 2010 IEEE.published_or_final_versionThe 2010 International Conference on Machine Learning and Cybernetics (ICMLC 2010), Qingdao, China, 11-14 July 2010. In Proceedings of the International Conference on Machine Learning and Cybernetics, 2010, v. 6, p. 3056-306

    DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences.

    Get PDF
    Modeling the properties and functions of DNA sequences is an important, but challenging task in the broad field of genomics. This task is particularly difficult for non-coding DNA, the vast majority of which is still poorly understood in terms of function. A powerful predictive model for the function of non-coding DNA can have enormous benefit for both basic science and translational research because over 98% of the human genome is non-coding and 93% of disease-associated variants lie in these regions. To address this need, we propose DanQ, a novel hybrid convolutional and bi-directional long short-term memory recurrent neural network framework for predicting non-coding function de novo from sequence. In the DanQ model, the convolution layer captures regulatory motifs, while the recurrent layer captures long-term dependencies between the motifs in order to learn a regulatory 'grammar' to improve predictions. DanQ improves considerably upon other models across several metrics. For some regulatory markers, DanQ can achieve over a 50% relative improvement in the area under the precision-recall curve metric compared to related models. We have made the source code available at the github repository http://github.com/uci-cbcl/DanQ

    Tree-guided group lasso for multi-response regression with structured sparsity, with an application to eQTL mapping

    Full text link
    We consider the problem of estimating a sparse multi-response regression function, with an application to expression quantitative trait locus (eQTL) mapping, where the goal is to discover genetic variations that influence gene-expression levels. In particular, we investigate a shrinkage technique capable of capturing a given hierarchical structure over the responses, such as a hierarchical clustering tree with leaf nodes for responses and internal nodes for clusters of related responses at multiple granularity, and we seek to leverage this structure to recover covariates relevant to each hierarchically-defined cluster of responses. We propose a tree-guided group lasso, or tree lasso, for estimating such structured sparsity under multi-response regression by employing a novel penalty function constructed from the tree. We describe a systematic weighting scheme for the overlapping groups in the tree-penalty such that each regression coefficient is penalized in a balanced manner despite the inhomogeneous multiplicity of group memberships of the regression coefficients due to overlaps among groups. For efficient optimization, we employ a smoothing proximal gradient method that was originally developed for a general class of structured-sparsity-inducing penalties. Using simulated and yeast data sets, we demonstrate that our method shows a superior performance in terms of both prediction errors and recovery of true sparsity patterns, compared to other methods for learning a multivariate-response regression.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS549 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Statistical and Computational Methods for Genome-Wide Association Analysis

    Full text link
    Technological and scientific advances in recent years have revolutionized genomics. For example, decreases in whole genome sequencing (WGS) costs have enabled larger WGS studies as well as larger imputation reference panels, which in turn provide more comprehensive genomic coverage from lower-cost genotyping methods. In addition, new technologies and large collaborative efforts such as ENCODE and GTEx have shed new light on regulatory genomics and the function of non-coding variation, and produced expansive publicly available data sets. These advances have introduced data of unprecedented size and dimension, unique statistical and computational challenges, and numerous opportunities for innovation. In this dissertation, we develop methods to leverage functional genomics data in post-GWAS analysis, to expedite routine computations with increasingly large genetic data sets, and to address limitations of current imputation reference panels for understudied populations. In Chapter 2, we propose strategies to improve imputation and increase power in GWAS of understudied populations. Genotype imputation is instrumental in GWAS, providing increased genomic coverage from low-cost genotyping arrays. Imputation quality depends crucially on reference panel size and the genetic distance between reference and target haplotypes. Current reference panels provide excellent imputation quality in many European populations, but lower quality in non-European, admixed, and isolate populations. We consider a GWAS strategy in which a subset of participants is sequenced and the rest are imputed using a reference panel that comprises the sequenced participants together with individuals from an external reference panel. Using empirical data from the HRC and TOPMed WGS Project, simulations, and asymptotic analysis, we identify powerful and cost-effective study designs for GWAS of non-European, admixed, and isolated populations. In Chapter 3, we develop efficient methods to estimate linkage disequilibrium (LD) with large data sets. Motivated by practical and logistical constraints, a variety of statistical methods and tools have been developed for analysis of GWAS summary statistics rather than individual-level data. These methods often rely on LD estimates from an external reference panel, which are ideally calculated on-the-fly rather than precomputed and stored. We develop efficient algorithms to estimate LD exploiting sparsity and haplotype structure and implement our methods in an open-source C++ tool, emeraLD. We benchmark performance using genotype data from the 1KGP, HRC, and UK Biobank, and find that emeraLD is up to two orders of magnitude faster than existing tools while using comparable or less memory. In Chapter 4, we develop methods to identify causative genes and biological mechanisms underlying associations in post-GWAS analysis by leveraging regulatory and functional genomics databases. Many gene-based association tests can be viewed as instrumental variable methods in which intermediate phenotypes, e.g. tissue-specific expression or protein alteration, are hypothesized to mediate the association between genotype and GWAS trait. However, LD and pleiotropy can confound these statistics, which complicates their mechanistic interpretation. We develop a hierarchical Bayesian model that accounts for multiple potential mechanisms underlying associations using functional genomic annotations derived from GTEx, Roadmap/ENCODE, and other sources. We apply our method to analyze twenty-five complex traits using GWAS summary statistics from UK Biobank, and provide an open-source implementation of our methods. In Chapter 5, we review our work, discuss its relevance and prospects as new resources emerge, and suggest directions for future research.PHDBiostatisticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147697/1/corbinq_1.pd

    A Bayesian method to incorporate hundreds of functional characteristics with association evidence to improve variant prioritization

    Get PDF
    The increasing quantity and quality of functional genomic information motivate the assessment and integration of these data with association data, including data originating from genome-wide association studies (GWAS). We used previously described GWAS signals ("hits") to train a regularized logistic model in order to predict SNP causality on the basis of a large multivariate functional dataset. We show how this model can be used to derive Bayes factors for integrating functional and association data into a combined Bayesian analysis. Functional characteristics were obtained from the Encyclopedia of DNA Elements (ENCODE), from published expression quantitative trait loci (eQTL), and from other sources of genome-wide characteristics. We trained the model using all GWAS signals combined, and also using phenotype specific signals for autoimmune, brain-related, cancer, and cardiovascular disorders. The non-phenotype specific and the autoimmune GWAS signals gave the most reliable results. We found SNPs with higher probabilities of causality from functional characteristics showed an enrichment of more significant p-values compared to all GWAS SNPs in three large GWAS studies of complex traits. We investigated the ability of our Bayesian method to improve the identification of true causal signals in a psoriasis GWAS dataset and found that combining functional data with association data improves the ability to prioritise novel hits. We used the predictions from the penalized logistic regression model to calculate Bayes factors relating to functional characteristics and supply these online alongside resources to integrate these data with association data

    Assessing allele-specific expression across multiple tissues from RNA-seq read data

    Get PDF
    Motivation: RNA sequencing enables allele-specific expression (ASE) studies that complement standard genotype expression studies for common variants and, importantly, also allow measuring the regulatory impact of rare variants. The Genotype-Tissue Expression (GTEx) project is collecting RNA-seq data on multiple tissues of a same set of individuals and novel methods are required for the analysis of these data. Results: We present a statistical method to compare different patterns of ASE across tissues and to classify genetic variants according to their impact on the tissue-wide expression profile. We focus on strong ASE effects that we are expecting to see for protein-truncating variants, but our method can also be adjusted for other types of ASE effects. We illustrate the method with a real data example on a tissue-wide expression profile of a variant causal for lipoid proteinosis, and with a simulation study to assess our method more generally. Availability and implementation: http://www.well.ox.ac.uk/~rivas/mamba/. R-sources and data examples http://www.iki.fi/mpirinen/ Contact: [email protected] or [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin
    corecore