26 research outputs found

    Novel Ternary Logic Gates Design in Nanoelectronics

    Get PDF
    In this paper, standard ternary logic gates are initially designed to considerably reduce static power consumption. This study proposes novel ternary gates based on two supply voltages in which the direct current is eliminated and the leakage current is reduced considerably. In addition, ST-OR and ST-AND are generated directly instead of ST-NAND and ST-NOR. The proposed gates have a high noise margin near V_(DD)/4. The simulation results indicated that the power consumption and PDP underwent a~sharp decrease and noise margin showed a considerable increase in comparison to both one supply and two supply based designs in previous works. PDP is improved in the proposed OR, as compared to one supply and two supply based previous works about 83% and 63%, respectively. Also, a memory cell is designed using the proposed STI logic gate, which has a considerably lower static power to store logic ‘1’ and the static noise margin, as compared to other designs

    An Optimal Gate Design for the Synthesis of Ternary Logic Circuits

    Get PDF
    Department of Electrical EngineeringOver the last few decades, CMOS-based digital circuits have been steadily developed. However, because of the power density limits, device scaling may soon come to an end, and new approaches for circuit designs are required. Multi-valued logic (MVL) is one of the new approaches, which increases the radix for computation to lower the complexity of the circuit. For the MVL implementation, ternary logic circuit designs have been proposed previously, though they could not show advantages over binary logic, because of unoptimized synthesis techniques. In this thesis, we propose a methodology to design ternary gates by modeling pull-up and pull-down operations of the gates. Our proposed methodology makes it possible to synthesize ternary gates with a minimum number of transistors. From HSPICE simulation results, our ternary designs show significant power-delay product reductions; 49 % in the ternary full adder and 62 % in the ternary multiplier compared to the existing methodology. We have also compared the number of transistors in CMOS-based binary logic circuits and ternary device-based logic circuits We propose a methodology for using ternary values effectively in sequential logic. Proposed ternary D flip-flop is designed to normally operate in four-edges of a ternary clock signal. A quad-edge-triggered ternary D flip-flop (QETDFF) is designed with static gates using CNTFET. From HSPICE simulation results, we have confirmed that power-delay-product (PDP) of QETDFF is reduced by 82.31 % compared to state of the art ternary D flip-flop. We synthesize a ternary serial adder using QETDFF. PDP of the proposed ternary serial adder is reduced by 98.23 % compared to state of the art design.ope

    Designing a Novel High Performance Four-to-Two Compressor Cell Based on CNTFET Technology for Low Voltages

    Get PDF
    Compressor cell is often placed in critical path of multiplier circuits to perform partial product summation. Therefore it plays a significant role in determining the entire performance of multiplier and digital system. Respecting to the necessity of low power design for portable electronic, designing a low power and high performance compressors seems to be a good solution to overcome of these problems for computations. In this paper a novel high performance four-to-two compressor cell is proposed using Carbon Nanotube Field Effect Transistors (CNTFETs) technology. The new cell is based on Majority Function, NOR, and NAND gates. The main advantage of proposed design in comparison with former cells is the ease of obtaining CARRY output by means of Majority function. Simulations have been done with 32nm technology node using Synopsys HSPICE software. Simulation results confirm the priority of the proposed cell compared to other state-of-the-art four-to-two compressor cells

    A balanced Memristor-CMOS ternary logic family and its application

    Full text link
    The design of balanced ternary digital logic circuits based on memristors and conventional CMOS devices is proposed. First, balanced ternary minimum gate TMIN, maximum gate TMAX and ternary inverters are systematically designed and verified by simulation, and then logic circuits such as ternary encoders, decoders and multiplexers are designed on this basis. Two different schemes are then used to realize the design of functional combinational logic circuits such as a balanced ternary half adder, multiplier, and numerical comparator. Finally, we report a series of comparisons and analyses of the two design schemes, which provide a reference for subsequent research and development of three-valued logic circuits.Comment: 15 pages, 30 figure

    CNFET-based design ternary logic design and arithmetic circuit simulation using HSPICE

    Get PDF
    This project report focuses on the multiple-value logic (MVL) or commonly known as ternary logic gates by using carbon nanotube (CNT) FETs devices (CNTFETs). It is shown ternary logic has promising future in CNTFETs when compare to conventional binary logic design, due to its simplicity and energy efficiency in digital design reduced circuit overhead such as chip area and interconnection. In this research, existing CNTFET-based binary inverter and standard ternary inverter with resistive-load (STI-R) for comparison with the other three types of inverter are proposed - Complementary Standard Ternary Inverter (CSTI); Standard Ternary Inverter with 1 resistor and 3 NCNTFET (NSTI-R); Standard Ternary Inverter with 1 resistor and 3 PCNTFET (PSTI-R) to analysis the performance, structure design and application. In addition, the research covers all the basic logic Ternary NAND gate and Ternary NOR gate for further benchmarking. All simulation results using SPICE are obtained and analyzed in the Direct Current (DC) setting and verifed using half adder. Further study behavior of ternary logic includes the implementation of partial binary design into the ternary design and performance benchmarking. The result shows the CSTI have advantage on low power design with low leakage while NSTI-R has advantage on high-speed design inverter. In addition, partial binary design in the arithmetic circuit ternary design with CSTI shows added advantage in a low power design

    A Novel Ultra Low-Power 10T CNFET-Based Full Adder Cell Design in 32nm Technology

    Get PDF
    Nowadays, energy consumption is the main concern in portable electronic systems such as laptops, smart mobile phones, personal digital assistances (PDAs) and so forth. Considering that the 1-bit Full adder cell has been the determinant circuit due to its wide usage in these systems, it affects the entire performance of the electronic system. In this paper, a novel low-power and low-energy 10 transistor (10T) Full Adder cell using NAND/NOR functions based on carbon nanotube field effect transistors (CNFETs) is presented. The proposed cell showed superiority in terms of power-delay product (PDP) compared to the other cells under different simulation condition, such as power supply, temperature, load and operating frequency variations. Moreover, a Monte Carlo (MC) simulation was conducted to study the reliability of the proposed cell against manufacturing process variations (i.e. the variations of diameters of carbon nanotubes). Simulations confirmed the robustness of the proposed cell

    Multiple-valued logic: technology and circuit implementation

    Get PDF
    Title from PDF of title page, viewed March 1, 2023Dissertation advisors: Masud H. Chowdhury and Yugyung LeeVitaIncludes bibliographical references (pages 91-107)Dissertation (Ph.D.)--Department of Computer Science and Electrical Engineering. University of Missouri--Kansas City, 2021Computing technologies are currently based on the binary logic/number system, which is dependent on the simple on and off switching mechanism of the prevailing transistors. With the exponential increase of data processing and storage needs, there is a strong push to move to a higher radix logic/number system that can eradicate or lessen many limitations of the binary system. Anticipated saturation of Moore's law and the necessity to increase information density and processing speed in the future micro and nanoelectronic circuits and systems provide a strong background and motivation for the beyond-binary logic system. During this project, different technologies for Multiple-Valued-Logic (MVL) devices and the associated prospects and constraints are discussed. The feasibility of the MVL system in real-world applications rests on resolving two major challenges: (i) development of an efficient mathematical approach to implement the MVL logic using available technologies and (ii) availability of effective synthesis techniques. The main part of this project can be divided into two categories: (i) proposing different novel and efficient design for various logic and arithmetic circuits such as inverter, NAND, NOR, adder, multiplexer etc. (ii) proposing different fast and efficient design for various sequential and memory circuits. For the operation of the device, two of the very promising emerging technologies are used: Graphene Nanoribbon Field Effect Transistor (GNRFET) and Carbon Nano Tube Field Effect Transistor (CNTFET). A comparative analysis of the proposed designs and several state-of-the-art designs are also given in all the cases in terms of delay, total power, and power-delay-product (PDP). The simulation and analysis are performed using the H-SPICE tool with a GNRFET model available on the Nanohub website and CNTFET model available from Standford University website.Introduction -- Fundamentals and scope of multiple valued logic -- Technological aspect of multiple valued logic circuit -- Ternary logic gates using Graphene Nano Ribbon Field Effect Transistor (GNRFET) -- Ternary arithmetic circuits using Graphene Nano Ribbon Field Effect Transistor (GNRFET) -- Ternary sequential circuits using Graphene Nano Ribbon Field Effect Transistor (GNRFET) -- Ternary memory circuits using Carbon Nano Tube Field Effect Transistor (CNTFET) -- Conclusions & future wor
    corecore