2,221 research outputs found

    Analysis and application of improved feedthrough logic

    Get PDF
    Continuous technology scaling and increased frequency of operation of VLSI circuits leads to increase in power density which raises thermal management problem. Therefore design of low power VLSI circuit technique is a challenging task without sacrificing its performance. This thesis presents the design of a low power dynamic circuit using a new CMOS domino logic family called feedthrough (FTL) logic. Dynamic logic circuits are more significant because of its faster speed and lesser transistor requirement as compared to static CMOS logic circuits. The need for faster circuits compels designers to use FTL as compared static and domino CMOS logic and the requirement of output inverter for cascading of various logic blocks in domino logic are eliminated in the proposed design. The proposed circuit for low power (LP-FTL) improves dynamic power consumption as compared to the existing FTL and to further improve its speed we propose another circuit (HS-FTL). This logic family improves speed at the cost of dynamic power consumption and area. Proposed modified FTL circuit families provide better PDP as compared to the existing FTL. Simulation results of both the proposed circuit using 0.18 µm, 1.8 V CMOS process technology indicate that the LP-FTL structure reduces the dynamic power approximately by 42% and the HS-FTL structure achieves a speed up- 1.4 for 10-stage of inverters and 8-bit ripple carry adder in comparison to existing FTL logic. Furthermore, we present various circuit design techniques to improve noise tolerance of the proposed FTL logic families. Noise in deep submicron technology limits the reliability and performance of ICs. The ANTE (average noise threshold energy) metric is used for the analysis of noise tolerance of proposed FTL. A 2-input NAND and NOR gate is designed by the proposed technique. Simulation results for a 2-input NAND gate at 0.18-µm, 1.8 V CMOS process technology show that the proposed noise tolerant circuit achieves 1.79X ANTE improvement along with the reduction in leakage power. Continuous scaling of technology towards the nanometer range significantly increases leakage current level and the effect of noise. This research can be further extended for performance optimization in terms of power, speed, area and noise immunity

    Current Comparison Domino based CHSK Domino Logic Technique for Rapid Progression and Low Power Alleviation

    Get PDF
    The proposed domino logic is developed with the combination of Current Comparison Domino (CCD) logic and Conditional High Speed Keeper (CHSK) domino logic. In order to improve the performance metrics like power, delay and noise immunity, the redesign of CHSK is proposed with the CCD. The performance improvement is based on the parasitic capacitance, which reduces on the dynamic node for robust and rapid process of the circuit. The proposed domino logic is designed with keeper and without keeper to measure the performance metrics of the circuit. The outcomes of the proposed domino logic are better when compared to the existing domino logic circuits. The simulation of the proposed CHSK based on the CCD logic circuit is carried out in Cadence Virtuoso tool

    Contributions on using embedded memory circuits as physically unclonable functions considering reliability issues

    Get PDF
    [eng] Moving towards Internet-of-Things (IoT) era, hardware security becomes a crucial research topic, because of the growing demand of electronic products that are remotely connected through networks. Novel hardware security primitives based on manufacturing process variability are proposed to enhance the security of the IoT systems. As a trusted root that provides physical randomness, a physically unclonable function is an essential base for hardware security. SRAM devices are becoming one of the most promising alternatives for the implementation of embedded physical unclonable functions as the start-up value of each bit-cell depends largely on the variability related with the manufacturing process. Not all bit-cells experience the same degree of variability, so it is possible that some cells randomly modify their logical starting value, while others will start-up always at the same value. However, physically unclonable function applications, such as identification and key generation, require more constant logical starting value to assure high reliability in PUF response. For this reason, some kind of post-processing is needed to correct the errors in the PUF response. Unfortunately, those cells that have more constant logic output are difficult to be detected in advance. This work characterizes by simulation the start-up value reproducibility proposing several metrics suitable for reliability estimation during design phases. The aim is to be able to predict by simulation the percentage of cells that will be suitable to be used as PUF generators. We evaluate the metrics results and analyze the start-up values reproducibility considering different external perturbation sources like several power supply ramp up times, previous internal values in the bit-cell, and different temperature scenarios. The characterization metrics can be exploited to estimate the number of suitable SRAM cells for use in PUF implementations that can be expected from a specific SRAM design.[cat] En l’era de la Internet de les coses (IoT), garantir la seguretat del hardware ha esdevingut un tema de recerca crucial, en especial a causa de la creixent demanda de productes electrònics que es connecten remotament a través de xarxes. Per millorar la seguretat dels sistemes IoT, s’han proposat noves solucions hardware basades en la variabilitat dels processos de fabricació. Les funcions físicament inclonables (PUF) constitueixen una font fiable d’aleatorietat física i són una base essencial per a la seguretat hardware. Les memòries SRAM s’estan convertint en una de les alternatives més prometedores per a la implementació de funcions físicament inclonables encastades. Això és així ja que el valor d’encesa de cada una de les cel·les que formen els bits de la memòria depèn en gran mesura de la variabilitat pròpia del procés de fabricació. No tots els bits tenen el mateix grau de variabilitat, així que algunes cel·les canvien el seu estat lògic d’encesa de forma aleatòria entre enceses, mentre que d’altres sempre assoleixen el mateix valor en totes les enceses. No obstant això, les funcions físicament inclonables, que s’utilitzen per generar claus d’identificació, requereixen un valor lògic d’encesa constant per tal d’assegurar una resposta fiable del PUF. Per aquest motiu, normalment es necessita algun tipus de postprocessament per corregir els possibles errors presents en la resposta del PUF. Malauradament, les cel·les que presenten una resposta més constant són difícils de detectar a priori. Aquest treball caracteritza per simulació la reproductibilitat del valor d’encesa de cel·les SRAM, i proposa diverses mètriques per estimar la fiabilitat de les cel·les durant les fases de disseny de la memòria. L'objectiu és ser capaç de predir per simulació el percentatge de cel·les que seran adequades per ser utilitzades com PUF. S’avaluen els resultats de diverses mètriques i s’analitza la reproductibilitat dels valors d’encesa de les cel·les considerant diverses fonts de pertorbacions externes, com diferents rampes de tensió per a l’encesa, els valors interns emmagatzemats prèviament en les cel·les, i diferents temperatures. Es proposa utilitzar aquestes mètriques per estimar el nombre de cel·les SRAM adients per ser implementades com a PUF en un disseny d‘SRAM específic.[spa] En la era de la Internet de las cosas (IoT), garantizar la seguridad del hardware se ha convertido en un tema de investigación crucial, en especial a causa de la creciente demanda de productos electrónicos que se conectan remotamente a través de redes. Para mejorar la seguridad de los sistemas IoT, se han propuesto nuevas soluciones hardware basadas en la variabilidad de los procesos de fabricación. Las funciones físicamente inclonables (PUF) constituyen una fuente fiable de aleatoriedad física y son una base esencial para la seguridad hardware. Las memorias SRAM se están convirtiendo en una de las alternativas más prometedoras para la implementación de funciones físicamente inclonables empotradas. Esto es así, puesto que el valor de encendido de cada una de las celdas que forman los bits de la memoria depende en gran medida de la variabilidad propia del proceso de fabricación. No todos los bits tienen el mismo grado de variabilidad. Así pues, algunas celdas cambian su estado lógico de encendido de forma aleatoria entre encendidos, mientras que otras siempre adquieren el mismo valor en todos los encendidos. Sin embargo, las funciones físicamente inclonables, que se utilizan para generar claves de identificación, requieren un valor lógico de encendido constante para asegurar una respuesta fiable del PUF. Por este motivo, normalmente se necesita algún tipo de posprocesado para corregir los posibles errores presentes en la respuesta del PUF. Desafortunadamente, las celdas que presentan una respuesta más constante son difíciles de detectar a priori. Este trabajo caracteriza por simulación la reproductibilidad del valor de encendido de celdas SRAM, y propone varias métricas para estimar la fiabilidad de las celdas durante las fases de diseño de la memoria. El objetivo es ser capaz de predecir por simulación el porcentaje de celdas que serán adecuadas para ser utilizadas como PUF. Se evalúan los resultados de varias métricas y se analiza la reproductibilidad de los valores de encendido de las celdas considerando varias fuentes de perturbaciones externas, como diferentes rampas de tensión para el encendido, los valores internos almacenados previamente en las celdas, y diferentes temperaturas. Se propone utilizar estas métricas para estimar el número de celdas SRAM adecuadas para ser implementadas como PUF en un diseño de SRAM específico

    Stack Contention-alleviated Precharge Keeper for Pseudo Domino Logic

    Full text link
    The dynamic circuits are supposed to offer superior speed and low power dissipation over static CMOS circuits. The domino logic circuits are used for high system performance but suffer from the precharge pulse degradation. This article provides different design topologies on the domino circuits to overcome the charge sharing and charge leakage with reference to the power dissipation and delay. The precharge keeper circuit has been proposed such that the keeper transistors also work as the precharge transistors to realize multiple output function. The performance improvement of the circuit\u27s analysis have been done for adders and logic gates using HSPICE tool. The proposed keeper techniques reveal lower power dissipation and lesser delay over the standard keeper circuit with less transistor count for different process variation

    Modeling of Substrate Noise Effects in Dynamic CMOS Circuits

    Get PDF
    The decrease in the feature size has led to the integration of both digital and analog circuits on the same silicon die which has led to many crosstalk issues. The crosstalk due to the substrate interactions also plagiarizes complete digital systems. This paper lays emphasis on this fact and because of the vulnerability of dynamic CMOS circuits to noise; a brief study of the effects of substrate variations on the performance of the dynamic CMOS circuits is carried out in this paper. The effects of substrate noise at very high frequencies (above 10 GHz) are also depicted in this paper. In order to accurately estimate the effects of substrate noise a substrate model is proposed and verified for functionality in the last section of this paper

    Stack Contention-alleviated Precharge Keeper for Pseudo Domino Logic

    Get PDF
    The dynamic circuits are supposed to offer superior speed and low power dissipation over static CMOS circuits. The domino logic circuits are used for high system performance but suffer from the precharge pulse degradation. This article provides different design topologies on the domino circuits to overcome the charge sharing and charge leakage with reference to the power dissipation and delay. The precharge keeper circuit has been proposed such that the keeper transistors also work as the precharge transistors to realize multiple output function. The performance improvement of the circuit’s analysis have been done for adders and logic gates using HSPICE tool. The proposed keeper techniques reveal lower power dissipation and lesser delay over the standard keeper circuit with less transistor count for different process variation

    Dynamic gates with hysteresis and configurable noise tolerance

    Get PDF
    Journal ArticleDynamic logic can provide significant performance and power benefit compared to implementations using static gates. Unfortunately dynamic gates have traditionally suffered from low noise margins, which limits their reliability. A new logic family, called complementary dynamic logic (CDL), is presented. CDL replaces the standard keeper logic with a dual dynamic keeper gate that is applicable to all dynamic gate structures. CDL provides dynamic gates with two novel characteristics: hysteresis and arbitrarily configurable noise margins. However, these two benefits come at the cost of reducing the gain and increasing the energy of the dynamic gate. This paper compares the noise, energy, performance, gain, and total transistor width tradeoffs of CDL and three other logic families applied to a 65nm cell library consisting of 23 functions. The results show that the performance advantages of dynamic domino gates can be maintained while providing significantly enhanced noise margins using CDL structures

    Discrete-Time Mixing Receiver Architecture for RF-Sampling Software-Defined Radio

    Get PDF
    A discrete-time (DT) mixing architecture for RF-sampling receivers is presented. This architecture makes RF sampling more suitable for software-defined radio (SDR) as it achieves wideband quadrature demodulation and wideband harmonic rejection. The paper consists of two parts. In the first part, different downconversion techniques are classified and compared, leading to the definition of a DT mixing concept. The suitability of CT-mixing and RF-sampling receivers to SDR is also discussed. In the second part, we elaborate the DT-mixing architecture, which can be realized by de-multiplexing. Simulation shows a wideband 90° phase shift between I and Q outputs without systematic channel bandwidth limitation. Oversampling and harmonic rejection relaxes RF pre-filtering and reduces noise and interference folding. A proof-of-concept DT-mixing downconverter has been built in 65 nm CMOS, for 0.2 to 0.9 GHz RF band employing 8-times oversampling. It can reject 2nd to 6th harmonics by 40 dB typically and without systematic channel bandwidth limitation. Without an LNA, it achieves a gain of -0.5 to 2.5 dB, a DSB noise figure of 18 to 20 dB, an IIP3 = +10 dBm, and an IIP2 = +53 dBm, while consuming less than 19 mW including multiphase clock generation
    corecore