120 research outputs found

    A novel target detection method for SAR images based on shadow proposal and saliency analysis

    Get PDF
    Conventional synthetic aperture radar (SAR) based target detection methods generally use high intensity pixels in the pre-screening stage while ignoring shadow information. Furthermore, they cannot accurately extract the target area and also have poor performance in cluttered environments. To solve this problem, a novel SAR target detection method which combines shadow proposal and saliency analysis is presented in this paper. The detection process is divided into shadow proposal, saliency detection and One-Class Support Vector Machine (OC-SVM) screening stages. In the shadow proposal stage, localizing targets is performed rst with the detected shadow regions to generate proposal chips that may contain potential targets. Then saliency detection is conducted to extract salient regions of the proposal chips using local spatial autocorrelation and signicance tests. Afterwards, in the last stage, the OC-SVM is employed to identify the real targets from the salient regions. Experimental results show that the proposed saliency detection method possesses higher detection accuracy than several state of the art methods on SAR images. Furthermore, the proposed SAR target detection method is demonstrated to be robust under dierent imaging environments. to extract salient regions of the proposal chips using local spatial autocorrelation and signicance tests. Afterwards, in the last stage, the OC-SVM is employe

    Remote Sensing Object Detection Meets Deep Learning: A Meta-review of Challenges and Advances

    Full text link
    Remote sensing object detection (RSOD), one of the most fundamental and challenging tasks in the remote sensing field, has received longstanding attention. In recent years, deep learning techniques have demonstrated robust feature representation capabilities and led to a big leap in the development of RSOD techniques. In this era of rapid technical evolution, this review aims to present a comprehensive review of the recent achievements in deep learning based RSOD methods. More than 300 papers are covered in this review. We identify five main challenges in RSOD, including multi-scale object detection, rotated object detection, weak object detection, tiny object detection, and object detection with limited supervision, and systematically review the corresponding methods developed in a hierarchical division manner. We also review the widely used benchmark datasets and evaluation metrics within the field of RSOD, as well as the application scenarios for RSOD. Future research directions are provided for further promoting the research in RSOD.Comment: Accepted with IEEE Geoscience and Remote Sensing Magazine. More than 300 papers relevant to the RSOD filed were reviewed in this surve

    A Survey of Deep Learning-Based Object Detection

    Get PDF
    Object detection is one of the most important and challenging branches of computer vision, which has been widely applied in peoples life, such as monitoring security, autonomous driving and so on, with the purpose of locating instances of semantic objects of a certain class. With the rapid development of deep learning networks for detection tasks, the performance of object detectors has been greatly improved. In order to understand the main development status of object detection pipeline, thoroughly and deeply, in this survey, we first analyze the methods of existing typical detection models and describe the benchmark datasets. Afterwards and primarily, we provide a comprehensive overview of a variety of object detection methods in a systematic manner, covering the one-stage and two-stage detectors. Moreover, we list the traditional and new applications. Some representative branches of object detection are analyzed as well. Finally, we discuss the architecture of exploiting these object detection methods to build an effective and efficient system and point out a set of development trends to better follow the state-of-the-art algorithms and further research.Comment: 30 pages,12 figure

    Very High Resolution (VHR) Satellite Imagery: Processing and Applications

    Get PDF
    Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Image Simulation in Remote Sensing

    Get PDF
    Remote sensing is being actively researched in the fields of environment, military and urban planning through technologies such as monitoring of natural climate phenomena on the earth, land cover classification, and object detection. Recently, satellites equipped with observation cameras of various resolutions were launched, and remote sensing images are acquired by various observation methods including cluster satellites. However, the atmospheric and environmental conditions present in the observed scene degrade the quality of images or interrupt the capture of the Earth's surface information. One method to overcome this is by generating synthetic images through image simulation. Synthetic images can be generated by using statistical or knowledge-based models or by using spectral and optic-based models to create a simulated image in place of the unobtained image at a required time. Various proposed methodologies will provide economical utility in the generation of image learning materials and time series data through image simulation. The 6 published articles cover various topics and applications central to Remote sensing image simulation. Although submission to this Special Issue is now closed, the need for further in-depth research and development related to image simulation of High-spatial and spectral resolution, sensor fusion and colorization remains.I would like to take this opportunity to express my most profound appreciation to the MDPI Book staff, the editorial team of Applied Sciences journal, especially Ms. Nimo Lang, the assistant editor of this Special Issue, talented authors, and professional reviewers

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews

    Fusion-based impairment modelling for an intelligent radar sensor architecture

    Get PDF
    An intelligent radar sensor concept has been developed using a modelling approach for prediction of sensor performance, based on application of sensor and environment models. Land clutter significantly impacts on the operation of radar sensors operating at low-grazing angles. The clutter modelling technique developed in this thesis for the prediction of land clutter forms the clutter model for the intelligent radar sensor. Fusion of remote sensing data is integral to the clutter modelling approach and is addressed by considering fusion of radar remote sensing data, and mitigation of speckle noise and data transmission impairments. The advantages of the intelligent sensor approach for predicting radar performance are demonstrated for several applications using measured data. The problem of predicting site-specific land radar performance is an important task which is complicated by the peculiarities and characteristics of the radar sensor, electromagnetic wave propagation, and the environment in which the radar is deployed. Airborne remote sensing data can provide information about the environment and terrain, which can be used to more accurately predict land radar performance. This thesis investigates how fusion of remote sensing data can be used in conjunction with a sensor modelling approach to enable site-specific prediction of land radar performance. The application of a radar sensor model and a priori information about the environment, gives rise to the notion of an intelligent radar sensor which can adapt to dynamically changing environments through intelligent processing of this a priori knowledge. This thesis advances the field of intelligent radar sensor design, through an approach based on fusion of a priori knowledge provided by remote sensing data, and application of a modelling approach to enable prediction of radar sensor performance. Original contributions are made in the areas of intelligent radar sensor development, improved estimation of land surface clutter intensity for site-specific low-grazing angle radar, and fusion and mitigation of sensor and data transmission impairments in radar remote sensing data.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    An Evaluation of Deep Learning-Based Object Identification

    Get PDF
    Identification of instances of semantic objects of a particular class, which has been heavily incorporated in people's lives through applications like autonomous driving and security monitoring, is one of the most crucial and challenging areas of computer vision. Recent developments in deep learning networks for detection have improved object detector accuracy. To provide a detailed review of the current state of object detection pipelines, we begin by analyzing the methodologies employed by classical detection models and providing the benchmark datasets used in this study. After that, we'll have a look at the one- and two-stage detectors in detail, before concluding with a summary of several object detection approaches. In addition, we provide a list of both old and new apps. It's not just a single branch of object detection that is examined. Finally, we look at how to utilize various object detection algorithms to create a system that is both efficient and effective. and identify a number of emerging patterns in order to better understand the using the most recent algorithms and doing more study
    • …
    corecore