5,683 research outputs found

    Large scale musical instrument identification

    Get PDF
    In this paper, automatic musical instrument identification using a variety of classifiers is addressed. Experiments are performed on a large set of recordings that stem from 20 instrument classes. Several features from general audio data classification applications as well as MPEG-7 descriptors are measured for 1000 recordings. Branch-and-bound feature selection is applied in order to select the most discriminating features for instrument classification. The first classifier is based on non-negative matrix factorization (NMF) techniques, where training is performed for each audio class individually. A novel NMF testing method is proposed, where each recording is projected onto several training matrices, which have been Gram-Schmidt orthogonalized. Several NMF variants are utilized besides the standard NMF method, such as the local NMF and the sparse NMF. In addition, 3-layered multilayer perceptrons, normalized Gaussian radial basis function networks, and support vector machines employing a polynomial kernel have also been tested as classifiers. The classification accuracy is high, ranging between 88.7% to 95.3%, outperforming the state-of-the-art techniques tested in the aforementioned experiment

    Musical instrument classification using non-negative matrix factorization algorithms

    No full text
    In this paper, a class of algorithms for automatic classification of individual musical instrument sounds is presented. Several perceptual features used in general sound classification applications were measured for 300 sound recordings consisting of 6 different musical instrument classes (piano, violin, cello, flute, bassoon and soprano saxophone). In addition, MPEG-7 basic spectral and spectral basis descriptors were considered, providing an effective combination for accurately describing the spectral and timbrai audio characteristics. The audio flies were split using 70% of the available data for training and the remaining 30% for testing. A classifier was developed based on non-negative matrix factorization (NMF) techniques, thus introducing a novel application of NMF. The standard NMF method was examined, as well as its modifications: the local, the sparse, and the discriminant NMF. Experimental results are presented to compare MPEG-7 spectral basis representations with MPEG-7 basic spectral features alongside the various NMF algorithms. The results indicate that the use of the spectrum projection coefficients for feature extraction and the standard NMF classifier yields an accuracy exceeding 95%. ©2006 IEEE

    INSTRUMENTATION-BASED MUSIC SIMILARITY USING SPARSE REPRESENTATIONS

    Get PDF
    © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
    corecore