20,384 research outputs found

    A novel statistical generative model dedicated to face recognition

    Get PDF
    In this paper, a novel statistical generative model to describe a face is presented, and is applied to the face authentication task. Classical generative models used so far in face recognition, such as Gaussian Mixture Models (GMMs) and Hidden Markov Models (HMMs) for instance, are making strong assumptions on the observations derived from a face image. Indeed, such models usually assume that local observations are independent, which is obviously not the case in a face. The presented model hence proposes to encode relationships between salient facial features by using a static Bayesian Network. Since robustness against imprecisely located faces is of great concern in a real-world scenario, authentication results are presented using automatically localised faces. Experiments conducted on the XM2VTS and the BANCA databases showed that the proposed approach is suitable for this task, since it reaches state-of-the-art results. We compare our model to baseline appearance-based systems (Eigenfaces and Fisherfaces) but also to classical generative models, namely GMM, HMM and pseudo-2DHMM. (C) 2009 Elsevier B.V. All rights reserved

    Deep Markov Random Field for Image Modeling

    Full text link
    Markov Random Fields (MRFs), a formulation widely used in generative image modeling, have long been plagued by the lack of expressive power. This issue is primarily due to the fact that conventional MRFs formulations tend to use simplistic factors to capture local patterns. In this paper, we move beyond such limitations, and propose a novel MRF model that uses fully-connected neurons to express the complex interactions among pixels. Through theoretical analysis, we reveal an inherent connection between this model and recurrent neural networks, and thereon derive an approximated feed-forward network that couples multiple RNNs along opposite directions. This formulation combines the expressive power of deep neural networks and the cyclic dependency structure of MRF in a unified model, bringing the modeling capability to a new level. The feed-forward approximation also allows it to be efficiently learned from data. Experimental results on a variety of low-level vision tasks show notable improvement over state-of-the-arts.Comment: Accepted at ECCV 201

    Adversarial Training in Affective Computing and Sentiment Analysis: Recent Advances and Perspectives

    Get PDF
    Over the past few years, adversarial training has become an extremely active research topic and has been successfully applied to various Artificial Intelligence (AI) domains. As a potentially crucial technique for the development of the next generation of emotional AI systems, we herein provide a comprehensive overview of the application of adversarial training to affective computing and sentiment analysis. Various representative adversarial training algorithms are explained and discussed accordingly, aimed at tackling diverse challenges associated with emotional AI systems. Further, we highlight a range of potential future research directions. We expect that this overview will help facilitate the development of adversarial training for affective computing and sentiment analysis in both the academic and industrial communities
    corecore