8,879 research outputs found

    Latent Semantic Learning with Structured Sparse Representation for Human Action Recognition

    Full text link
    This paper proposes a novel latent semantic learning method for extracting high-level features (i.e. latent semantics) from a large vocabulary of abundant mid-level features (i.e. visual keywords) with structured sparse representation, which can help to bridge the semantic gap in the challenging task of human action recognition. To discover the manifold structure of midlevel features, we develop a spectral embedding approach to latent semantic learning based on L1-graph, without the need to tune any parameter for graph construction as a key step of manifold learning. More importantly, we construct the L1-graph with structured sparse representation, which can be obtained by structured sparse coding with its structured sparsity ensured by novel L1-norm hypergraph regularization over mid-level features. In the new embedding space, we learn latent semantics automatically from abundant mid-level features through spectral clustering. The learnt latent semantics can be readily used for human action recognition with SVM by defining a histogram intersection kernel. Different from the traditional latent semantic analysis based on topic models, our latent semantic learning method can explore the manifold structure of mid-level features in both L1-graph construction and spectral embedding, which results in compact but discriminative high-level features. The experimental results on the commonly used KTH action dataset and unconstrained YouTube action dataset show the superior performance of our method.Comment: The short version of this paper appears in ICCV 201

    Robust PCA as Bilinear Decomposition with Outlier-Sparsity Regularization

    Full text link
    Principal component analysis (PCA) is widely used for dimensionality reduction, with well-documented merits in various applications involving high-dimensional data, including computer vision, preference measurement, and bioinformatics. In this context, the fresh look advocated here permeates benefits from variable selection and compressive sampling, to robustify PCA against outliers. A least-trimmed squares estimator of a low-rank bilinear factor analysis model is shown closely related to that obtained from an â„“0\ell_0-(pseudo)norm-regularized criterion encouraging sparsity in a matrix explicitly modeling the outliers. This connection suggests robust PCA schemes based on convex relaxation, which lead naturally to a family of robust estimators encompassing Huber's optimal M-class as a special case. Outliers are identified by tuning a regularization parameter, which amounts to controlling sparsity of the outlier matrix along the whole robustification path of (group) least-absolute shrinkage and selection operator (Lasso) solutions. Beyond its neat ties to robust statistics, the developed outlier-aware PCA framework is versatile to accommodate novel and scalable algorithms to: i) track the low-rank signal subspace robustly, as new data are acquired in real time; and ii) determine principal components robustly in (possibly) infinite-dimensional feature spaces. Synthetic and real data tests corroborate the effectiveness of the proposed robust PCA schemes, when used to identify aberrant responses in personality assessment surveys, as well as unveil communities in social networks, and intruders from video surveillance data.Comment: 30 pages, submitted to IEEE Transactions on Signal Processin

    Sparsity-Inducing Fuzzy Subspace Clustering

    Get PDF
    This paper considers a fuzzy subspace clustering problem and proposes to introduce an original sparsity-inducing regularization term. The minimization of this term, which involves a l0_{0} penalty, is considered from a geometric point of view and a novel proximal operator is derived. A subspace clustering algorithm, Prosecco, is proposed to optimize the cost function using both proximal and alternate gradient descent. Experiments comparing this algorithm to the state of the art in sparse fuzzy subspace clustering show the relevance of the proposed approach

    Tree-guided group lasso for multi-response regression with structured sparsity, with an application to eQTL mapping

    Full text link
    We consider the problem of estimating a sparse multi-response regression function, with an application to expression quantitative trait locus (eQTL) mapping, where the goal is to discover genetic variations that influence gene-expression levels. In particular, we investigate a shrinkage technique capable of capturing a given hierarchical structure over the responses, such as a hierarchical clustering tree with leaf nodes for responses and internal nodes for clusters of related responses at multiple granularity, and we seek to leverage this structure to recover covariates relevant to each hierarchically-defined cluster of responses. We propose a tree-guided group lasso, or tree lasso, for estimating such structured sparsity under multi-response regression by employing a novel penalty function constructed from the tree. We describe a systematic weighting scheme for the overlapping groups in the tree-penalty such that each regression coefficient is penalized in a balanced manner despite the inhomogeneous multiplicity of group memberships of the regression coefficients due to overlaps among groups. For efficient optimization, we employ a smoothing proximal gradient method that was originally developed for a general class of structured-sparsity-inducing penalties. Using simulated and yeast data sets, we demonstrate that our method shows a superior performance in terms of both prediction errors and recovery of true sparsity patterns, compared to other methods for learning a multivariate-response regression.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS549 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore