4,100 research outputs found

    A Novel Smartphone Application for Indoor Positioning of Users based on Machine Learning

    Get PDF
    Smartphones are linked with individuals and are valuable and yet easily available sources for characterising users’ behaviour and activities. User’s location is among the characteristics of each individual that can be utilised in the provision of location-based services (LBs) in numerous scenarios such as remote health-care and interactive museums. Mobile phone tracking and positioning techniques approximate the position of a mobile phone and thereby its user, by disclosing the actual coordinate of a mobile phone. Considering the advances in positioning techniques, indoor positioning is still a challenging issue, because the coverage of satellite signals is limited in indoor environments. One of the promising solutions for indoor positioning is fingerprinting in which the signals of some known transmitters are measured in several reference points (RPs). This measured data, which is called dataset is stored and used to train a mathematical model that relates the received signal from the transmitters (model input) and the location of that user (the output of the model). Considering all the improvements in indoor positioning, there is still a gap between practical solutions and the optimal solution that provides near theoretical accuracy for positioning. This accuracy directly impacts the level of usability and reliability in corresponding LBSs. In this paper, we develop a smartphone app with the ability to be trained and detect users’ location, accurately. We use Gaussian Process Regression (GPR) as a probabilistic method to find the parameters of a non-linear and non-convex indoor positioning model. We collect a dataset of received signals’ strength (RSS) in several RPs by using a software which is prepared and installed on an Android smartphone.We also find the accurate 2σ confidence interval in the presented GPR method and evaluate the performance of the proposed method by measured data in a realistic scenario. The measurements confirm that our proposed method outperforms some conventional methods including KNN, SVR and PCA-SVR in terms of accuracy

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    PinMe: Tracking a Smartphone User around the World

    Full text link
    With the pervasive use of smartphones that sense, collect, and process valuable information about the environment, ensuring location privacy has become one of the most important concerns in the modern age. A few recent research studies discuss the feasibility of processing data gathered by a smartphone to locate the phone's owner, even when the user does not intend to share his location information, e.g., when the Global Positioning System (GPS) is off. Previous research efforts rely on at least one of the two following fundamental requirements, which significantly limit the ability of the adversary: (i) the attacker must accurately know either the user's initial location or the set of routes through which the user travels and/or (ii) the attacker must measure a set of features, e.g., the device's acceleration, for potential routes in advance and construct a training dataset. In this paper, we demonstrate that neither of the above-mentioned requirements is essential for compromising the user's location privacy. We describe PinMe, a novel user-location mechanism that exploits non-sensory/sensory data stored on the smartphone, e.g., the environment's air pressure, along with publicly-available auxiliary information, e.g., elevation maps, to estimate the user's location when all location services, e.g., GPS, are turned off.Comment: This is the preprint version: the paper has been published in IEEE Trans. Multi-Scale Computing Systems, DOI: 0.1109/TMSCS.2017.275146

    Indoor navigation for the visually impaired : enhancements through utilisation of the Internet of Things and deep learning

    Get PDF
    Wayfinding and navigation are essential aspects of independent living that heavily rely on the sense of vision. Walking in a complex building requires knowing exact location to find a suitable path to the desired destination, avoiding obstacles and monitoring orientation and movement along the route. People who do not have access to sight-dependent information, such as that provided by signage, maps and environmental cues, can encounter challenges in achieving these tasks independently. They can rely on assistance from others or maintain their independence by using assistive technologies and the resources provided by smart environments. Several solutions have adapted technological innovations to combat navigation in an indoor environment over the last few years. However, there remains a significant lack of a complete solution to aid the navigation requirements of visually impaired (VI) people. The use of a single technology cannot provide a solution to fulfil all the navigation difficulties faced. A hybrid solution using Internet of Things (IoT) devices and deep learning techniques to discern the patterns of an indoor environment may help VI people gain confidence to travel independently. This thesis aims to improve the independence and enhance the journey of VI people in an indoor setting with the proposed framework, using a smartphone. The thesis proposes a novel framework, Indoor-Nav, to provide a VI-friendly path to avoid obstacles and predict the user s position. The components include Ortho-PATH, Blue Dot for VI People (BVIP), and a deep learning-based indoor positioning model. The work establishes a novel collision-free pathfinding algorithm, Orth-PATH, to generate a VI-friendly path via sensing a grid-based indoor space. Further, to ensure correct movement, with the use of beacons and a smartphone, BVIP monitors the movements and relative position of the moving user. In dark areas without external devices, the research tests the feasibility of using sensory information from a smartphone with a pre-trained regression-based deep learning model to predict the user s absolute position. The work accomplishes a diverse range of simulations and experiments to confirm the performance and effectiveness of the proposed framework and its components. The results show that Indoor-Nav is the first type of pathfinding algorithm to provide a novel path to reflect the needs of VI people. The approach designs a path alongside walls, avoiding obstacles, and this research benchmarks the approach with other popular pathfinding algorithms. Further, this research develops a smartphone-based application to test the trajectories of a moving user in an indoor environment

    Managing big data experiments on smartphones

    Get PDF
    The explosive number of smartphones with ever growing sensing and computing capabilities have brought a paradigm shift to many traditional domains of the computing field. Re-programming smartphones and instrumenting them for application testing and data gathering at scale is currently a tedious and time-consuming process that poses significant logistical challenges. Next generation smartphone applications are expected to be much larger-scale and complex, demanding that these undergo evaluation and testing under different real-world datasets, devices and conditions. In this paper, we present an architecture for managing such large-scale data management experiments on real smartphones. We particularly present the building blocks of our architecture that encompassed smartphone sensor data collected by the crowd and organized in our big data repository. The given datasets can then be replayed on our testbed comprising of real and simulated smartphones accessible to developers through a web-based interface. We present the applicability of our architecture through a case study that involves the evaluation of individual components that are part of a complex indoor positioning system for smartphones, coined Anyplace, which we have developed over the years. The given study shows how our architecture allows us to derive novel insights into the performance of our algorithms and applications, by simplifying the management of large-scale data on smartphones

    Indoor Localization for Personalized Ambient Assisted Living of Multiple Users in Multi-Floor Smart Environments

    Full text link
    This paper presents a multifunctional interdisciplinary framework that makes four scientific contributions towards the development of personalized ambient assisted living, with a specific focus to address the different and dynamic needs of the diverse aging population in the future of smart living environments. First, it presents a probabilistic reasoning-based mathematical approach to model all possible forms of user interactions for any activity arising from the user diversity of multiple users in such environments. Second, it presents a system that uses this approach with a machine learning method to model individual user profiles and user-specific user interactions for detecting the dynamic indoor location of each specific user. Third, to address the need to develop highly accurate indoor localization systems for increased trust, reliance, and seamless user acceptance, the framework introduces a novel methodology where two boosting approaches Gradient Boosting and the AdaBoost algorithm are integrated and used on a decision tree-based learning model to perform indoor localization. Fourth, the framework introduces two novel functionalities to provide semantic context to indoor localization in terms of detecting each user's floor-specific location as well as tracking whether a specific user was located inside or outside a given spatial region in a multi-floor-based indoor setting. These novel functionalities of the proposed framework were tested on a dataset of localization-related Big Data collected from 18 different users who navigated in 3 buildings consisting of 5 floors and 254 indoor spatial regions. The results show that this approach of indoor localization for personalized AAL that models each specific user always achieves higher accuracy as compared to the traditional approach of modeling an average user

    A real-time fingerprint-based indoor positioning using deep learning and preceding states

    Get PDF
    In fingerprint-based positioning methods, the received signal strength (RSS) vectors from access points are measured at reference points and saved in a database. Then, this dataset is used for the training phase of a pattern recognition algorithm. Several noise types impact the signals in radio channels, and RSS values are corrupted correspondingly. These noises can be mitigated by averaging the RSS samples. In real-time applications, the users cannot wait to collect uncorrelated RSS samples to calculate their average in the online phase of the positioning process. In this paper, we propose a solution for this problem by leveraging the distribution of RSS samples in the offline phase and the preceding state of the user in the online phase. In the first step, we propose a fast and accurate positioning algorithm using a deep neural network (DNN) to learn the distribution of available RSS samples instead of averaging them at the offline phase. Then, the similarity of an online RSS sample to the RPs’ fingerprints is obtained to estimate the user’s location. Next, the proposed DNN model is combined with a novel state-based positioning method to more accurately estimate the user’s location. Extensive experiments on both benchmark and our collected datasets in two different scenarios (single RSS sample and many RSS samples for each user in the online phase) verify the superiority of the proposed algorithm compared with traditional regression algorithms such as deep neural network regression, Gaussian process regression, random forest, and weighted KNN
    • …
    corecore