6,773 research outputs found

    Delineating Parameter Unidentifiabilities in Complex Models

    Full text link
    Scientists use mathematical modelling to understand and predict the properties of complex physical systems. In highly parameterised models there often exist relationships between parameters over which model predictions are identical, or nearly so. These are known as structural or practical unidentifiabilities, respectively. They are hard to diagnose and make reliable parameter estimation from data impossible. They furthermore imply the existence of an underlying model simplification. We describe a scalable method for detecting unidentifiabilities, and the functional relations defining them, for generic models. This allows for model simplification, and appreciation of which parameters (or functions thereof) cannot be estimated from data. Our algorithm can identify features such as redundant mechanisms and fast timescale subsystems, as well as the regimes in which such approximations are valid. We base our algorithm on a novel quantification of regional parametric sensitivity: multiscale sloppiness. Traditionally, the link between parametric sensitivity and the conditioning of the parameter estimation problem is made locally, through the Fisher Information Matrix. This is valid in the regime of infinitesimal measurement uncertainty. We demonstrate the duality between multiscale sloppiness and the geometry of confidence regions surrounding parameter estimates made where measurement uncertainty is non-negligible. Further theoretical relationships are provided linking multiscale sloppiness to the Likelihood-ratio test. From this, we show that a local sensitivity analysis (as typically done) is insufficient for determining the reliability of parameter estimation, even with simple (non)linear systems. Our algorithm provides a tractable alternative. We finally apply our methods to a large-scale, benchmark Systems Biology model of NF-κ\kappaB, uncovering previously unknown unidentifiabilities

    Data driven optimal filtering for phase and frequency of noisy oscillations: application to vortex flowmetering

    Full text link
    A new method for extracting the phase of oscillations from noisy time series is proposed. To obtain the phase, the signal is filtered in such a way that the filter output has minimal relative variation in the amplitude (MIRVA) over all filters with complex-valued impulse response. The argument of the filter output yields the phase. Implementation of the algorithm and interpretation of the result are discussed. We argue that the phase obtained by the proposed method has a low susceptibility to measurement noise and a low rate of artificial phase slips. The method is applied for the detection and classification of mode locking in vortex flowmeters. A novel measure for the strength of mode locking is proposed.Comment: 12 pages, 10 figure

    Dynamical Systems

    Get PDF
    Complex systems are pervasive in many areas of science integrated in our daily lives. Examples include financial markets, highway transportation networks, telecommunication networks, world and country economies, social networks, immunological systems, living organisms, computational systems and electrical and mechanical structures. Complex systems are often composed of a large number of interconnected and interacting entities, exhibiting much richer global scale dynamics than the properties and behavior of individual entities. Complex systems are studied in many areas of natural sciences, social sciences, engineering and mathematical sciences. This special issue therefore intends to contribute towards the dissemination of the multifaceted concepts in accepted use by the scientific community. We hope readers enjoy this pertinent selection of papers which represents relevant examples of the state of the art in present day research. [...

    Tsallis non-extensive statistics, intermittent turbulence, SOC and chaos in the solar plasma. Part one: Sunspot dynamics

    Full text link
    In this study, the nonlinear analysis of the sunspot index is embedded in the non-extensive statistical theory of Tsallis. The triplet of Tsallis, as well as the correlation dimension and the Lyapunov exponent spectrum were estimated for the SVD components of the sunspot index timeseries. Also the multifractal scaling exponent spectrum, the generalized Renyi dimension spectrum and the spectrum of the structure function exponents were estimated experimentally and theoretically by using the entropy principle included in Tsallis non extensive statistical theory, following Arimitsu and Arimitsu. Our analysis showed clearly the following: a) a phase transition process in the solar dynamics from high dimensional non Gaussian SOC state to a low dimensional non Gaussian chaotic state, b) strong intermittent solar turbulence and anomalous (multifractal) diffusion solar process, which is strengthened as the solar dynamics makes phase transition to low dimensional chaos in accordance to Ruzmaikin, Zeleny and Milovanov studies c) faithful agreement of Tsallis non equilibrium statistical theory with the experimental estimations of i) non-Gaussian probability distribution function, ii) multifractal scaling exponent spectrum and generalized Renyi dimension spectrum, iii) exponent spectrum of the structure functions estimated for the sunspot index and its underlying non equilibrium solar dynamics.Comment: 40 pages, 11 figure

    Numerical computation of nonlinear normal modes in mechanical engineering

    Get PDF
    This paper reviews the recent advances in computational methods for nonlinear normal modes (NNMs). Different algorithms for the computation of undamped and damped NNMs are presented, and their respective advantages and limitations are discussed. The methods are illustrated using various applications ranging from low-dimensional weakly nonlinear systems to strongly nonlinear industrial structures. © 2015 Elsevier Ltd

    Physics-informed learning of governing equations from scarce data

    Full text link
    Harnessing data to discover the underlying governing laws or equations that describe the behavior of complex physical systems can significantly advance our modeling, simulation and understanding of such systems in various science and engineering disciplines. This work introduces a novel physics-informed deep learning framework to discover governing partial differential equations (PDEs) from scarce and noisy data for nonlinear spatiotemporal systems. In particular, this approach seamlessly integrates the strengths of deep neural networks for rich representation learning, physics embedding, automatic differentiation and sparse regression to (1) approximate the solution of system variables, (2) compute essential derivatives, as well as (3) identify the key derivative terms and parameters that form the structure and explicit expression of the PDEs. The efficacy and robustness of this method are demonstrated, both numerically and experimentally, on discovering a variety of PDE systems with different levels of data scarcity and noise accounting for different initial/boundary conditions. The resulting computational framework shows the potential for closed-form model discovery in practical applications where large and accurate datasets are intractable to capture.Comment: 46 pages; 1 table, 6 figures and 3 extended data figures in main text; 2 tables and 12 figures in supplementary informatio
    corecore