498 research outputs found

    Binning sequences using very sparse labels within a metagenome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In metagenomic studies, a process called binning is necessary to assign contigs that belong to multiple species to their respective phylogenetic groups. Most of the current methods of binning, such as BLAST, <it>k</it>-mer and PhyloPythia, involve assigning sequence fragments by comparing sequence similarity or sequence composition with already-sequenced genomes that are still far from comprehensive. We propose a semi-supervised seeding method for binning that does not depend on knowledge of completed genomes. Instead, it extracts the flanking sequences of highly conserved 16S rRNA from the metagenome and uses them as seeds (labels) to assign other reads based on their compositional similarity.</p> <p>Results</p> <p>The proposed seeding method is implemented on an unsupervised Growing Self-Organising Map (GSOM), and called Seeded GSOM (S-GSOM). We compared it with four well-known semi-supervised learning methods in a preliminary test, separating random-length prokaryotic sequence fragments sampled from the NCBI genome database. We identified the flanking sequences of the highly conserved 16S rRNA as suitable seeds that could be used to group the sequence fragments according to their species. S-GSOM showed superior performance compared to the semi-supervised methods tested. Additionally, S-GSOM may also be used to visually identify some species that do not have seeds.</p> <p>The proposed method was then applied to simulated metagenomic datasets using two different confidence threshold settings and compared with PhyloPythia, <it>k</it>-mer and BLAST. At the reference taxonomic level Order, S-GSOM outperformed all <it>k</it>-mer and BLAST results and showed comparable results with PhyloPythia for each of the corresponding confidence settings, where S-GSOM performed better than PhyloPythia in the ≥ 10 reads datasets and comparable in the ≥ 8 kb benchmark tests.</p> <p>Conclusion</p> <p>In the task of binning using semi-supervised learning methods, results indicate S-GSOM to be the best of the methods tested. Most importantly, the proposed method does not require knowledge from known genomes and uses only very few labels (one per species is sufficient in most cases), which are extracted from the metagenome itself. These advantages make it a very attractive binning method. S-GSOM outperformed the binning methods that depend on already-sequenced genomes, and compares well to the current most advanced binning method, PhyloPythia.</p

    The Oral Microbiome of Site-Specific Dental Plaque in Health and Disease

    Get PDF
    According to the National Institutes of Health, dental caries is the leading chronic disease of children in the United States. Dental caries is biofilm-mediated, multifactorial and dynamic. Research using culturing techniques and high throughput 16S rRNA amplicon sequencing unraveled the taxonomic complexity of mixed microbial communities (microbiome) in dental biofilms (plaque) and their abundance differences. However, 16S rRNA sequencing fails to resolve taxonomic assignment beyond genus level for certain taxa, which is problematic in identifying potential antagonistic species within the same genus. The presented work addressed current shortcomings in dental microbiome research. First, dental plaque samples used in this study were collected from either caries-free (PF) teeth or caries-active teeth with lesions in the enamel layer (PE). This site-specific collection method provides a better understanding of the role of specific organisms and biological processes as teeth transition from health to disease. Second, deep sequencing was used to produce whole genome metagenomic data, i.e. complete or semi complete genomes drafted from mixed bacterial communities, potentially enhancing bacterial species detection, identifying rare species, and providing the gene content of the samples and their metabolic potential. Overall, the objective of this study was to provide species level taxonomic classification and metabolic potential of mixed microbial communities in plaque collected from site-specific dentition. Two different approaches to analyze whole genome metagenomic data were used and compared. (i) Read based taxonomic classification and supervised assembly where short reads are taxonomically classified prior to genome assembly. (ii) Contig based taxonomic classification and unsupervised assembly where an assembler is used to assemble reads into contigs directly. The contigs produced are then classified taxonomically. The read based taxonomic classification and supervised assembly approach outperformed the latter in an assessment of taxonomic assignment accuracy using a mock metagenomic data set. The taxonomic profiles for PF and PE reported by both approaches were virtually identical however their distributions showed variation. The taxonomic inter-sample similarities were reflected in the gene content information as both approaches reported minor metabolic potential differences between PF and PE. Noticeably, both approaches reported significantly enriched biological processes involved in sugar transport and metabolism in PE

    Clustering metagenomic sequences with interpolated Markov models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sequencing of environmental DNA (often called metagenomics) has shown tremendous potential to uncover the vast number of unknown microbes that cannot be cultured and sequenced by traditional methods. Because the output from metagenomic sequencing is a large set of reads of unknown origin, clustering reads together that were sequenced from the same species is a crucial analysis step. Many effective approaches to this task rely on sequenced genomes in public databases, but these genomes are a highly biased sample that is not necessarily representative of environments interesting to many metagenomics projects.</p> <p>Results</p> <p>We present S<smcaps>CIMM</smcaps> (Sequence Clustering with Interpolated Markov Models), an unsupervised sequence clustering method. S<smcaps>CIMM</smcaps> achieves greater clustering accuracy than previous unsupervised approaches. We examine the limitations of unsupervised learning on complex datasets, and suggest a hybrid of S<smcaps>CIMM</smcaps> and supervised learning method Phymm called P<smcaps>HY</smcaps>S<smcaps>CIMM</smcaps> that performs better when evolutionarily close training genomes are available.</p> <p>Conclusions</p> <p>S<smcaps>CIMM</smcaps> and P<smcaps>HY</smcaps>S<smcaps>CIMM</smcaps> are highly accurate methods to cluster metagenomic sequences. S<smcaps>CIMM</smcaps> operates entirely unsupervised, making it ideal for environments containing mostly novel microbes. P<smcaps>HY</smcaps>S<smcaps>CIMM</smcaps> uses supervised learning to improve clustering in environments containing microbial strains from well-characterized genera. S<smcaps>CIMM</smcaps> and P<smcaps>HY</smcaps>S<smcaps>CIMM</smcaps> are available open source from <url>http://www.cbcb.umd.edu/software/scimm</url>.</p

    Metagenomics : tools and insights for analyzing next-generation sequencing data derived from biodiversity studies

    Get PDF
    Advances in next-generation sequencing (NGS) have allowed significant breakthroughs in microbial ecology studies. This has led to the rapid expansion of research in the field and the establishment of “metagenomics”, often defined as the analysis of DNA from microbial communities in environmental samples without prior need for culturing. Many metagenomics statistical/computational tools and databases have been developed in order to allow the exploitation of the huge influx of data. In this review article, we provide an overview of the sequencing technologies and how they are uniquely suited to various types of metagenomic studies. We focus on the currently available bioinformatics techniques, tools, and methodologies for performing each individual step of a typical metagenomic dataset analysis. We also provide future trends in the field with respect to tools and technologies currently under development. Moreover, we discuss data management, distribution, and integration tools that are capable of performing comparative metagenomic analyses of multiple datasets using well-established databases, as well as commonly used annotation standards

    RAIphy: Phylogenetic classification of metagenomics samples using iterative refinement of relative abundance index profiles

    Get PDF
    Background: Computational analysis of metagenomes requires the taxonomical assignment of the genome contigs assembled from DNA reads of environmental samples. Because of the diverse nature of microbiomes, the length of the assemblies obtained can vary between a few hundred bp to a few hundred Kbp. Current taxonomic classification algorithms provide accurate classification for long contigs or for short fragments from organisms that have close relatives with annotated genomes. These are significant limitations for metagenome analysis because of the complexity of microbiomes and the paucity of existing annotated genomes. Results: We propose a robust taxonomic classification method, RAIphy, that uses a novel sequence similarity metric with iterative refinement of taxonomic models and functions effectively without these limitations. We have tested RAIphy with synthetic metagenomics data ranging between 100 bp to 50 Kbp. Within a sequence read range of 100 bp-1000 bp, the sensitivity of RAIphy ranges between 38%-81% outperforming the currently popular composition-based methods for reads in this range. Comparison with computationally more intensive sequence similarity methods shows that RAIphy performs competitively while being significantly faster. The sensitivityspecificity characteristics for relatively longer contigs were compared with the PhyloPythia and TACOA algorithms. RAIphy performs better than these algorithms at varying clade-levels. For an acid mine drainage (AMD) metagenome, RAIphy was able to taxonomically bin the sequence read set more accurately than the currently available methods, Phymm and MEGAN, and more accurately in two out of three tests than the much more computationally intensive method, PhymmBL. Conclusions: With the introduction of the relative abundance index metric and an iterative classification method, we propose a taxonomic classification algorithm that performs competitively for a large range of DNA contig lengths assembled from metagenome data. Because of its speed, simplicity, and accuracy RAIphy can be successfully used in the binning process for a broad range of metagenomic data obtained from environmental samples

    Taxonomic assignment for large-scale metagenomic data on high-perfomance systems

    Get PDF
    Metagenomics is a powerful approach to study environment samples which do not require the isolation and cultivation of individual organisms. One of the essential tasks in a metagenomic project is to identify the origin of reads, referred to as taxonomic assignment. Due to the fact that each metagenomic project has to analyze large-scale datasets, the metatenomic assignment is very much computation intensive. This study proposes a parallel algorithm for the taxonomic assignment problem, called SeMetaPL, which aims to deal with the computational challenge. The proposed algorithm is evaluated with both simulated and real datasets on a high performance computing system. Experimental results demonstrate that the algorithm is able to achieve good performance and utilize resources of the system efficiently. The software implementing the algorithm and all test datasets can be downloaded at http://it.hcmute.edu.vn/bioinfo/metapro/SeMetaPL.html

    The oligonucleotide frequency derived error gradient and its application to the binning of metagenome fragments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The characterisation, or binning, of metagenome fragments is an important first step to further downstream analysis of microbial consortia. Here, we propose a one-dimensional signature, OFDEG, derived from the oligonucleotide frequency profile of a DNA sequence, and show that it is possible to obtain a meaningful phylogenetic signal for relatively short DNA sequences. The one-dimensional signal is essentially a compact representation of higher dimensional feature spaces of greater complexity and is intended to improve on the tetranucleotide frequency feature space preferred by current compositional binning methods.</p> <p>Results</p> <p>We compare the fidelity of OFDEG against tetranucleotide frequency in both an unsupervised and semi-supervised setting on simulated metagenome benchmark data. Four tests were conducted using assembler output of Arachne and phrap, and for each, performance was evaluated on contigs which are greater than or equal to 8 kbp in length and contigs which are composed of at least 10 reads. Using both G-C content in conjunction with OFDEG gave an average accuracy of 96.75% (semi-supervised) and 95.19% (unsupervised), versus 94.25% (semi-supervised) and 82.35% (unsupervised) for tetranucleotide frequency.</p> <p>Conclusion</p> <p>We have presented an observation of an alternative characteristic of DNA sequences. The proposed feature representation has proven to be more beneficial than the existing tetranucleotide frequency space to the metagenome binning problem. We do note, however, that our observation of OFDEG deserves further anlaysis and investigation. Unsupervised clustering revealed OFDEG related features performed better than standard tetranucleotide frequency in representing a relevant organism specific signal. Further improvement in binning accuracy is given by semi-supervised classification using OFDEG. The emphasis on a feature-driven, bottom-up approach to the problem of binning reveals promising avenues for future development of techniques to characterise short environmental sequences without bias toward cultivable organisms.</p

    Unsupervised binning of environmental genomic fragments based on an error robust selection of l-mers

    Get PDF
    BACKGROUND: With the rapid development of genome sequencing techniques, traditional research methods based on the isolation and cultivation of microorganisms are being gradually replaced by metagenomics, which is also known as environmental genomics. The first step, which is still a major bottleneck, of metagenomics is the taxonomic characterization of DNA fragments (reads) resulting from sequencing a sample of mixed species. This step is usually referred as 'binning'. Existing binning methods are based on supervised or semi-supervised approaches which rely heavily on reference genomes of known microorganisms and phylogenetic marker genes. Due to the limited availability of reference genomes and the bias and instability of marker genes, existing binning methods may not be applicable in many cases. RESULTS: In this paper, we present an unsupervised binning method based on the distribution of a carefully selected set of l-mers (substrings of length l in DNA fragments). From our experiments, we show that our method can accurately bin DNA fragments with various lengths and relative species abundance ratios without using any reference and training datasets. Another feature of our method is its error robustness. The binning accuracy decreases by less than 1% when the sequencing error rate increases from 0% to 5%. Note that the typical sequencing error rate of existing commercial sequencing platforms is less than 2%. CONCLUSIONS: We provide a new and effective tool to solve the metagenome binning problem without using any reference datasets or markers information of any known reference genomes (species). The source code of our software tool, the reference genomes of the species for generating the test datasets and the corresponding test datasets are available at http://i.cs.hku.hk/alse/MetaCluster/.published_or_final_versio
    corecore