697 research outputs found

    Application of Tuned Mass Dampers for Structural Vibration Control: A State-of-the-art Review

    Get PDF
    Given the burgeoning demand for construction of structures and high-rise buildings, controlling the structural vibrations under earthquake and other external dynamic forces seems more important than ever. Vibration control devices can be classified into passive, active and hybrid control systems. The technologies commonly adopted to control vibration, reduce damage, and generally improve the structural performance, include, but not limited to, damping, vibration isolation, control of excitation forces, vibration absorber. Tuned Mass Dampers (TMDs) have become a popular tool for protecting structures from unpredictable vibrations because of their relatively simple principles, their relatively easy performance optimization as shown in numerous recent successful applications. This paper presents a critical review of active, passive, semi-active and hybrid control systems of TMD used for preserving structures against forces induced by earthquake or wind, and provides a comparison of their efficiency, and comparative advantages and disadvantages. Despite the importance and recent advancement in this field, previous review studies have only focused on either passive or active TMDs. Hence this review covers the theoretical background of all types of TMDs and discusses the structural, analytical, practical differences and the economic aspects of their application in structural control. Moreover, this study identifies and highlights a range of knowledge gaps in the existing studies within this area of research. Among these research gaps, we identified that the current practices in determining the principle natural frequency of TMDs needs improvement. Furthermore, there is an increasing need for more complex methods of analysis for both TMD and structures that consider their nonlinear behavior as this can significantly improve the prediction of structural response and in turn, the optimization of TMDs

    A novel semi-active TMD with folding variable stiffness spring

    Get PDF
    An innovative variable stiffness device is proposed and investigated based on numerical simulations. The device, called a folding variable stiffness spring (FVSS), can be widely used, especially in tuned mass dampers (TMDs) with adaptive stiffness. An important characteristic of FVSS is its capability to change the stiffness between lower and upper bounds through a small change of distance between its supports. This special feature results in lower time-lag errors and readjustment in shorter time intervals. The governing equations of the device are derived and simplified for a symmetrical FVSS with similar elements. This device is then used to control a single-degree-of-freedom (SDOF) structure as well as a multi-degree-of-freedom (MDOF) structure via a semi-active TMD. Numerical simulations are conducted to compare several control cases for these structures. To make it more realistic, a real direct current motor with its own limitations is simulated in addition to an ideal control case with no limitations and both the results are compared. It is shown that the proposed device can be effectively used to suppress undesirable vibrations of a structure and considerably improves the performance of the controller compared to a passive device

    A state-of-the-art review on magnetorheological elastomer devices

    Get PDF
    © 2014 IOP Publishing Ltd. During the last few decades, magnetorheological (MR) elastomers have attracted a significant amount of attention for their enormous potential in engineering applications. Because they are a solid counterpart to MR fluids, MR elastomers exhibit a unique field-dependent material property when exposed to a magnetic field, and they overcome major issues faced in magnetorheological fluids, e.g. the deposition of iron particles, sealing problems and environmental contamination. Such advantages offer great potential for designing intelligent devices to be used in various engineering fields, especially in fields that involve vibration reduction and isolation. This paper presents a state of the art review on the recent progress of MR elastomer technology, with special emphasis on the research and development of MR elastomer devices and their applications. To keep the integrity of the knowledge, this review includes a brief introduction of MR elastomer materials and follows with a discussion of critical issues involved in designing magnetorheological elastomer devices, i.e. operation modes, coil placements and principle fundamentals. A comprehensive review has been presented on the research and development of MR elastomer devices, including vibration absorbers, vibration isolators, base isolators, sensing devices, and so on. A summary of the research on the modeling mechanical behavior for both the material and the devices is presented. Finally, the challenges and the potential facing magnetorheological elastomer technology are discussed, and suggestions have been made based on the authors' knowledge and experience

    Stabilisation of the high energy orbit for a nonlinear energy harvester with variable damping

    Get PDF
    The non-linearity of a hardening-type oscillator provides a wider bandwidth and a higher energy harvesting capability under harmonic excitations. Also, both low- and high-energy responses can coexist for the same parameter combinations at relatively high excitation levels. However, if the oscillator’s response happens to coincide with the low-energy orbit then the improved performance achieved by the non-linear oscillator over that of its linear counterpart, could be impaired. This is therefore the main motivation for stabilisation of the high-energy orbit. In the present work, a schematic harvester design is considered consisting of a mass supported by two linear springs connected in series, each with a parallel damper, and a third-order non-linear spring. The equivalent linear stiffness and damping coefficients of the oscillator are derived through variation of the damper element. From this adjustment the variation of the equivalent stiffness generates a corresponding shift in the frequency–amplitude response curve, and this triggers a jump from the low-energy orbit to stabilise the high-energy orbit. This approach has been seen to require little additional energy supply for the adjustment and stabilisation, compared with that needed for direct stiffness tuning by mechanical means. Overall energy saving is of particular importance for energy harvesting applications. Subsequent results from simulation and experimentation confirm that the proposed method can be used to trigger a jump to the desirable state, thereby introducing a beneficial addition to the performance of the non-linear hardening-type energy harvester that improves overall efficiency and broadens the bandwidth

    Development of magnetorheological elastomers-based tuned mass damper for building protection from seismic events

    Get PDF
    This study investigated and evaluated a semi-active tuned mass damper which incorporated four multi-layered structures fabricated using magnetorheological elastomers. The four magnetorheological elastomer structures formed a square and provided the tuned mass damper variable stiffness used to track the excitation frequencies. This design not only increases the stability of the tuned mass damper but more importantly eliminates the magnetic circuit gap in a design which we used in the past because all four of the magnetic circuits used to control the magnetorheological elastomer isolators are closed circuits. In order to verify the capability of the magnetorheological elastomer-based tuned mass damper to protect a building from earthquake, extensive simulation and experimental testing were conducted. The swept sinusoidal signal and the scaled 1940 El Centro earthquake record were used to excite a scaled three-story building. Both simulation and experiment have verified that the magnetorheological elastomer-based tuned mass damper outperformed all other passive tuned mass dampers under either swept sinusoidal or seismic conditions

    A Deep Reinforcement Learning-Based Controller for Magnetorheological-Damped Vehicle Suspension

    Full text link
    This paper proposes a novel approach to controller design for MR-damped vehicle suspension system. This approach is predicated on the premise that the optimal control strategy can be learned through real-world or simulated experiments utilizing a reinforcement learning algorithm with continuous states/actions. The sensor data is fed into a Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which generates the actuation voltage required for the MR damper. The resulting suspension space (displacement), sprung mass acceleration, and dynamic tire load are calculated using a quarter vehicle model incorporating the modified Bouc-Wen MR damper model. Deep RL's reward function is based on sprung mass acceleration. The proposed approach outperforms traditional suspension control strategies regarding ride comfort and stability, as demonstrated by multiple simulated experimentsComment: 19 pages , 9 figures , 5 table

    Dual Purpose Tunable Vibration Isolator Energy Harvester: Design, Fabrication, Modeling and Characterization

    Get PDF
    This dissertation is focused on design, fabrication, characterization, and modeling of a unique dual purpose vibration isolation energy harvesting system. The purpose of the system is to, simultaneously, attenuate unwanted vibrations and scavenge kinetic energy available in these vibrations. This study includes theoretical modeling and experimental work to fully characterize and understand the dynamic behavior of the fabricated dual purpose system. In the theoretical study, both numerical (Runge-Kutta) and analytical (Harmonic Balance Method, HBM) methods are used to obtain the dynamic behavior of the system. The system features a combination of mechanical and electromagnetic components to facilitate its dual functionality. The system consists of a magnetic spring, mechanical flat spring, and dampers. The combination of negative stiffness of the magnetic spring with positive stiffness of the mechanical spring results in lowering the cut off frequency of the system. Lowering the cut off frequency improves the device’s ability to operate in a wider range of frequencies. Results from dynamic measurements and model simulation confirm the ability of the device to function in both vibration isolation and energy harvesting modes simultaneously. The dual-purpose device is able to attenuate vibrations higher than 12.5 [Hz]. The device also produces 26.8 [mW] output power at 1g [m/s2] and 9.75 [Hz]. Performance metrics of the device including displacement transmissibility and energy conversion efficiency are formulated. Results show that for low acceleration levels, lower damping values are desirable and yield higher energy conversion efficiencies and improved vibration isolation. At higher acceleration, there is a trade-off where lower damping values worsen vibration isolation but yield higher conversion efficiencies

    Active Blade Pitch and Hull-Based Structural Control of Floating Offshore Wind Turbines

    Get PDF
    Floating offshore wind turbines (FOWTs) have the potential to bring renewable energy to waters too deep for traditional offshore wind turbines while still being able to harness strong coastal winds in areas near population centers. However, these floating wind turbines come at a higher capital cost relative to fixed foundations and are more susceptible to vibrations induced by waves. Advances in control technologies offer the potential to reduce fatigue loads due to these vibrations, extending the life of the platform and thereby spreading the capital costs of the turbine over a longer period of time. One such advance is in blade pitch control, a standard component of most modern wind turbines. Existing solutions for adapting the blade pitch controller for use on a floating platform either detune the controller with the result of slowed response, make use of complicated tuning methods, or incorporate a nacelle velocity feedback gain. With the goal of developing a simple control tuning method for the general FOWT researcher that is easily extensible to a wide array of turbine and hull configurations, this last idea is built upon by proposing a simple tuning strategy for the feedback gain. This strategy uses a two degree-of-freedom (DoF) turbine model that considers tower-top fore-aft and rotor angular displacements. For evaluation, the nacelle velocity term is added to an existing gain scheduled proportional-integral controller as a proportional gain. The modified controller is then compared to baseline land-based and detuned controllers on semisubmersible, spar, and TLP systems for several load cases. Results show that the new tuning method balances power production and fatigue load management effectively, demonstrating that it is adaptable to many different types of hulls. This makes it useful for prototype design. Advances in hull-based structural control are also considered through the evaluation and development of a gain schedule for a novel type of adjustable tuned mass damper known as a ducted fluid absorber. This type of tuned mass damper uses compressed air to adjust its natural frequency, and so the amount of power consumed by the compressors is evaluated relative to the output of the wind turbine. Performance of a hull designed for ducted fluid absorbers is evaluated for several incoming wave directions to ensure consistent performance, and the potential for extracting electricity from the ducted fluid absorbers is considered. Finding the dampers to be feasible for use, a method of scheduling the settings of these dampers to minimize the standard deviation of a platform rigid-body mode of choice is developed. The addition of the dampers is found to produce significant reductions in the magnitude of several vibration modes, though the advantages of actively controlling the damper setting are small relative to those of simply having the dampers
    • …
    corecore