318 research outputs found

    Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data

    Get PDF
    The objective of this study is to evaluate machine learning algorithms aimed at predicting surgical treatment outcomes in groups of patients with temporal lobe epilepsy (TLE) using only the structural brain connectome. Specifically, the brain connectome is reconstructed using white matter fiber tracts from presurgical diffusion tensor imaging. To achieve our objective, a two-stage connectome-based prediction framework is developed that gradually selects a small number of abnormal network connections that contribute to the surgical treatment outcome, and in each stage a linear kernel operation is used to further improve the accuracy of the learned classifier. Using a 10-fold cross validation strategy, the first stage in the connectome-based framework is able to separate patients with TLE from normal controls with 80% accuracy, and second stage in the connectome-based framework is able to correctly predict the surgical treatment outcome of patients with TLE with 70% accuracy. Compared to existing state-of-the-art methods that use VBM data, the proposed two-stage connectome-based prediction framework is a suitable alternative with comparable prediction performance. Our results additionally show that machine learning algorithms that exclusively use structural connectome data can predict treatment outcomes in epilepsy with similar accuracy compared with "expert-based" clinical decision. In summary, using the unprecedented information provided in the brain connectome, machine learning algorithms may uncover pathological changes in brain network organization and improve outcome forecasting in the context of epilepsy

    Optimized Biosignals Processing Algorithms for New Designs of Human Machine Interfaces on Parallel Ultra-Low Power Architectures

    Get PDF
    The aim of this dissertation is to explore Human Machine Interfaces (HMIs) in a variety of biomedical scenarios. The research addresses typical challenges in wearable and implantable devices for diagnostic, monitoring, and prosthetic purposes, suggesting a methodology for tailoring such applications to cutting edge embedded architectures. The main challenge is the enhancement of high-level applications, also introducing Machine Learning (ML) algorithms, using parallel programming and specialized hardware to improve the performance. The majority of these algorithms are computationally intensive, posing significant challenges for the deployment on embedded devices, which have several limitations in term of memory size, maximum operative frequency, and battery duration. The proposed solutions take advantage of a Parallel Ultra-Low Power (PULP) architecture, enhancing the elaboration on specific target architectures, heavily optimizing the execution, exploiting software and hardware resources. The thesis starts by describing a methodology that can be considered a guideline to efficiently implement algorithms on embedded architectures. This is followed by several case studies in the biomedical field, starting with the analysis of a Hand Gesture Recognition, based on the Hyperdimensional Computing algorithm, which allows performing a fast on-chip re-training, and a comparison with the state-of-the-art Support Vector Machine (SVM); then a Brain Machine Interface (BCI) to detect the respond of the brain to a visual stimulus follows in the manuscript. Furthermore, a seizure detection application is also presented, exploring different solutions for the dimensionality reduction of the input signals. The last part is dedicated to an exploration of typical modules for the development of optimized ECG-based applications

    A Multi-Tier Distributed fog-based Architecture for Early Prediction of Epileptic Seizures

    Get PDF
    Epilepsy is the fourth most common neurological problem. With 50 million people living with epilepsy worldwide, about one in 26 people will continue experiencing recurring seizures during their lifetime. Epileptic seizures are characterized by uncontrollable movements and can cause loss of awareness. Despite the optimal use of antiepileptic medications, seizures are still difficult to control due to their sudden and unpredictable nature. Such seizures can put the lives of patients and others at risk. For example, seizure attacks while patients are driving could affect their ability to control a vehicle and could result in injuries to the patients as well as others. Notifying patients before the onset of seizures can enable them to avoid risks and minimize accidents, thus, save their lives. Early and accurate prediction of seizures can play a significant role in improving patients’ quality of life and helping doctors to administer medications through providing a historical overview of patient's condition over time. The individual variability and the dynamic disparity in differentiating between the pre-ictal phase (a period before the onset of the seizure) and other seizures phases make the early prediction of seizures a challenging task. Although several research projects have focused on developing a reliable seizure prediction model, numerous challenges still exist and need to be addressed. Most of the existing approaches are not suitable for real-time settings, which requires bio-signals collection and analysis in real-time. Various methods were developed based on the analysis of EEG signals without considering the notification latency and computational cost to support monitoring of multiple patients. Limited approaches were designed based on the analysis of ECG signals. ECG signals can be collected using consumer wearable devices and are suitable for light-weight real-time analysis. Moreover, existing prediction methods were developed based on the analysis of seizure state and ignored the investigation of pre-ictal state. The analysis of the pre-ictal state is essential in the prediction of seizures at an early stage. Therefore, there is a crucial need to design a novel computing model for early prediction of epileptic seizures. This model would greatly assist in improving the patients' quality of lives. This work proposes a multi-tier architecture for early prediction of seizures based on the analysis of two vital signs, namely, Electrocardiography (ECG) and Electroencephalogram (EEG) signals. The proposed architecture comprises of three tiers: (1) sensing at the first tier, (2) lightweight analysis based on ECG signals at the second tier, and (3) deep analysis based on EEG signals at the third tier. The proposed architecture is developed to leverage the potential of fog computing technology at the second tier for a real-time signal analytics and ubiquitous response. The proposed architecture can enable the early prediction of epileptic seizures, reduce the notification latency, and minimize the energy consumption on real-time data transmissions. Moreover, the proposed architecture is designed to allow for both lightweight and extensive analytics, thus make accurate and reliable decisions. The proposed lightweight model is formulated using the analysis of ECG signals to detect the pre-ictal state. The lightweight model utilizes the Least Squares Support Vector Machines (LS-SVM) classifier, while the proposed extensive analytics model analyzes EEG signals and utilizes Deep Belief Network (DBN) to provide an accurate classification of the patient’s state. The performance of the proposed architecture is evaluated in terms of latency minimization and energy consumption in comparison with the cloud. Moreover, the performance of the proposed prediction models is evaluated using three datasets. Various performance metrics were used to investigate the prediction model performance, including: accuracy, sensitivity, specificity, and F1-Measure. The results illustrate the merits of the proposed architecture and show significant improvement in the early prediction of seizures in terms of accuracy, sensitivity, and specificity

    New approaches for EEG signal processing: artifact EOG removal by ICA-RLS scheme and tracks extraction method

    Get PDF
    Localizing the bioelectric phenomena originating from the cerebral cortex and evoked by auditory and somatosensory stimuli are clear objectives to both understand how the brain works and to recognize different pathologies. Diseases such as Parkinson’s, Alzheimer’s, schizophrenia and epilepsy are intensively studied to find a cure or accurate diagnosis. Epilepsy is considered the disease with major prevalence within disorders with neurological origin. The recurrent and sudden incidence of seizures can lead to dangerous and possibly life-threatening situations. Since disturbance of consciousness and sudden loss of motor control often occur without any warning, the ability to predict epileptic seizures would reduce patients’ anxiety, thus considerably improving quality of life and safety. The common procedure for epilepsy seizure detection is based on brain activity monitorization via electroencephalogram (EEG) data. This process consumes a lot of time, especially in the case of long recordings, but the major problem is the subjective nature of the analysis among specialists when analyzing the same record. From this perspective, the identification of hidden dynamical patterns is necessary because they could provide insight into the underlying physiological mechanisms that occur in the brain. Time-frequency distributions (TFDs) and adaptive methods have demonstrated to be good alternatives in designing systems for detecting neurodegenerative diseases. TFDs are appropriate transformations because they offer the possibility of analyzing relatively long continuous segments of EEG data even when the dynamics of the signal are rapidly changing. On the other hand, most of the detection methods proposed in the literature assume a clean EEG signal free of artifacts or noise, leaving the preprocessing problem opened to any denoising algorithm. In this thesis we have developed two proposals for EEG signal processing: the first approach consists in electrooculogram (EOG) removal method based on a combination of ICA and RLS algorithms which automatically cancels the artifacts produced by eyes movement without the use of external “ad hoc” electrode. This method, called ICA-RLS has been compared with other techniques that are in the state of the art and has shown to be a good alternative for artifacts rejection. The second approach is a novel method in EEG features extraction called tracks extraction (LFE features). This method is based on the TFDs and partial tracking. Our results in pattern extractions related to epileptic seizures have shown that tracks extraction is appropriate in EEG detection and classification tasks, being practical, easily applicable in medical environment and has acceptable computational cost
    • 

    corecore