292 research outputs found

    An Automatic Level Set Based Liver Segmentation from MRI Data Sets

    Get PDF
    A fast and accurate liver segmentation method is a challenging work in medical image analysis area. Liver segmentation is an important process for computer-assisted diagnosis, pre-evaluation of liver transplantation and therapy planning of liver tumors. There are several advantages of magnetic resonance imaging such as free form ionizing radiation and good contrast visualization of soft tissue. Also, innovations in recent technology and image acquisition techniques have made magnetic resonance imaging a major tool in modern medicine. However, the use of magnetic resonance images for liver segmentation has been slow when we compare applications with the central nervous systems and musculoskeletal. The reasons are irregular shape, size and position of the liver, contrast agent effects and similarities of the gray values of neighbor organs. Therefore, in this study, we present a fully automatic liver segmentation method by using an approximation of the level set based contour evolution from T2 weighted magnetic resonance data sets. The method avoids solving partial differential equations and applies only integer operations with a two-cycle segmentation algorithm. The efficiency of the proposed approach is achieved by applying the algorithm to all slices with a constant number of iteration and performing the contour evolution without any user defined initial contour. The obtained results are evaluated with four different similarity measures and they show that the automatic segmentation approach gives successful results

    Dual-channel active contour model for megakaryocytic cell segmentation in bone marrow trephine histology images

    Get PDF
    Assessment of morphological features of megakaryocytes (special kind of cells) in bone marrow trephine biopsies play an important role in the classification of different subtypes of Philadelphia-chromosome-negative myeloproliferative neoplasms (Ph-negative MPNs). In order to aid hematopathologists in the study of megakaryocytes, we propose a novel framework that can efficiently delineate the nuclei and cytoplasm of these cells in digitized images of bone marrow trephine biopsies. The framework first employs a supervised machine learning approach that utilizes color and texture features to delineate megakaryocytic nuclei. It then employs a novel dual-channel active contour model to delineate the boundary of megakaryocytic cytoplasm by using different deconvolved stain channels. Compared to other recent models, the proposed framework achieves accurate results for both megakaryocytic nuclear and cytoplasmic delineation

    Single-Image based unsupervised joint segmentation and denoising

    Full text link
    In this work, we develop an unsupervised method for the joint segmentation and denoising of a single image. To this end, we combine the advantages of a variational segmentation method with the power of a self-supervised, single-image based deep learning approach. One major strength of our method lies in the fact, that in contrast to data-driven methods, where huge amounts of labeled samples are necessary, our model can segment an image into multiple meaningful regions without any training database. Further, we introduce a novel energy functional in which denoising and segmentation are coupled in a way that both tasks benefit from each other. The limitations of existing single-image based variational segmentation methods, which are not capable of dealing with high noise or generic texture, are tackled by this specific combination with self-supervised image denoising. We propose a unified optimisation strategy and show that, especially for very noisy images available in microscopy, our proposed joint approach outperforms its sequential counterpart as well as alternative methods focused purely on denoising or segmentation. Another comparison is conducted with a supervised deep learning approach designed for the same application, highlighting the good performance of our approach

    Discontinuity preserving image registration for breathing induced sliding organ motion

    Get PDF
    Image registration is a powerful tool in medical image analysis and facilitates the clinical routine in several aspects. It became an indispensable device for many medical applications including image-guided therapy systems. The basic goal of image registration is to spatially align two images that show a similar region of interest. More speci�cally, a displacement �eld respectively a transformation is estimated, that relates the positions of the pixels or feature points in one image to the corresponding positions in the other one. The so gained alignment of the images assists the doctor in comparing and diagnosing them. There exist di�erent kinds of image registration methods, those which are capable to estimate a rigid transformation or more generally an a�ne transformation between the images and those which are able to capture a more complex motion by estimating a non-rigid transformation. There are many well established non-rigid registration methods, but those which are able to preserve discontinuities in the displacement �eld are rather rare. These discontinuities appear in particular at organ boundaries during the breathing induced organ motion. In this thesis, we make use of the idea to combine motion segmentation with registration to tackle the problem of preserving the discontinuities in the resulting displacement �eld. We introduce a binary function to represent the motion segmentation and the proposed discontinuity preserving non-rigid registration method is then formulated in a variational framework. Thus, an energy functional is de�ned and its minimisation with respect to the displacement �eld and the motion segmentation will lead to the desired result. In theory, one can prove that for the motion segmentation a global minimiser of the energy functional can be found, if the displacement �eld is given. The overall minimisation problem, however, is non-convex and a suitable optimisation strategy has to be considered. Furthermore, depending on whether we use the pure L1-norm or an approximation of it in the formulation of the energy functional, we use di�erent numerical methods to solve the minimisation problem. More speci�cally, when using an approximation of the L1-norm, the minimisation of the energy functional with respect to the displacement �eld is performed through Brox et al.'s �xed point iteration scheme, and the minimisation with respect to the motion segmentation with the dual algorithm of Chambolle. On the other hand, when we make use of the pure L1-norm in the energy functional, the primal-dual algorithm of Chambolle and Pock is used for both, the minimisation with respect to the displacement �eld and the motion segmentation. This approach is clearly faster compared to the one using the approximation of the L1-norm and also theoretically more appealing. Finally, to support the registration method during the minimisation process, we incorporate additionally in a later approach the information of certain landmark positions into the formulation of the energy functional, that makes use of the pure L1-norm. Similarly as before, the primal-dual algorithm of Chambolle and Pock is then used for both, the minimisation with respect to the displacement �eld and the motion segmentation. All the proposed non-rigid discontinuity preserving registration methods delivered promising results for experiments with synthetic images and real MR images of breathing induced liver motion

    Fully automated breast boundary and pectoral muscle segmentation in mammograms

    Get PDF
    Breast and pectoral muscle segmentation is an essential pre-processing step for the subsequent processes in Computer Aided Diagnosis (CAD) systems. Estimating the breast and pectoral boundaries is a difficult task especially in mammograms due to artifacts, homogeneity between the pectoral and breast regions, and low contrast along the skin-air boundary. In this paper, a breast boundary and pectoral muscle segmentation method in mammograms is proposed. For breast boundary estimation, we determine the initial breast boundary via thresholding and employ Active Contour Models without edges to search for the actual boundary. A post-processing technique is proposed to correct the overestimated boundary caused by artifacts. The pectoral muscle boundary is estimated using Canny edge detection and a pre-processing technique is proposed to remove noisy edges. Subsequently, we identify five edge features to find the edge that has the highest probability of being the initial pectoral contour and search for the actual boundary via contour growing. The segmentation results for the proposed method are compared with manual segmentations using 322, 208 and 100 mammograms from the Mammographic Image Analysis Society (MIAS), INBreast and Breast Cancer Digital Repository (BCDR) databases, respectively. Experimental results show that the breast boundary and pectoral muscle estimation methods achieved dice similarity coefficients of 98.8% and 97.8% (MIAS), 98.9% and 89.6% (INBreast) and 99.2% and 91.9% (BCDR), respectively

    A comparative evaluation for liver segmentation from spir images and a novel level set method using signed pressure force function

    Get PDF
    Thesis (Doctoral)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2013Includes bibliographical references (leaves: 118-135)Text in English; Abstract: Turkish and Englishxv, 145 leavesDeveloping a robust method for liver segmentation from magnetic resonance images is a challenging task due to similar intensity values between adjacent organs, geometrically complex liver structure and injection of contrast media, which causes all tissues to have different gray level values. Several artifacts of pulsation and motion, and partial volume effects also increase difficulties for automatic liver segmentation from magnetic resonance images. In this thesis, we present an overview about liver segmentation methods in magnetic resonance images and show comparative results of seven different liver segmentation approaches chosen from deterministic (K-means based), probabilistic (Gaussian model based), supervised neural network (multilayer perceptron based) and deformable model based (level set) segmentation methods. The results of qualitative and quantitative analysis using sensitivity, specificity and accuracy metrics show that the multilayer perceptron based approach and a level set based approach which uses a distance regularization term and signed pressure force function are reasonable methods for liver segmentation from spectral pre-saturation inversion recovery images. However, the multilayer perceptron based segmentation method requires a higher computational cost. The distance regularization term based automatic level set method is very sensitive to chosen variance of Gaussian function. Our proposed level set based method that uses a novel signed pressure force function, which can control the direction and velocity of the evolving active contour, is faster and solves several problems of other applied methods such as sensitivity to initial contour or variance parameter of the Gaussian kernel in edge stopping functions without using any regularization term
    corecore