44,571 research outputs found

    DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks

    Full text link
    We present DeblurGAN, an end-to-end learned method for motion deblurring. The learning is based on a conditional GAN and the content loss . DeblurGAN achieves state-of-the art performance both in the structural similarity measure and visual appearance. The quality of the deblurring model is also evaluated in a novel way on a real-world problem -- object detection on (de-)blurred images. The method is 5 times faster than the closest competitor -- DeepDeblur. We also introduce a novel method for generating synthetic motion blurred images from sharp ones, allowing realistic dataset augmentation. The model, code and the dataset are available at https://github.com/KupynOrest/DeblurGANComment: CVPR 2018 camera-read

    Boosted Multiple Kernel Learning for First-Person Activity Recognition

    Get PDF
    Activity recognition from first-person (ego-centric) videos has recently gained attention due to the increasing ubiquity of the wearable cameras. There has been a surge of efforts adapting existing feature descriptors and designing new descriptors for the first-person videos. An effective activity recognition system requires selection and use of complementary features and appropriate kernels for each feature. In this study, we propose a data-driven framework for first-person activity recognition which effectively selects and combines features and their respective kernels during the training. Our experimental results show that use of Multiple Kernel Learning (MKL) and Boosted MKL in first-person activity recognition problem exhibits improved results in comparison to the state-of-the-art. In addition, these techniques enable the expansion of the framework with new features in an efficient and convenient way.Comment: First published in the Proceedings of the 25th European Signal Processing Conference (EUSIPCO-2017) in 2017, published by EURASI

    Automatic Classification of Human Epithelial Type 2 Cell Indirect Immunofluorescence Images using Cell Pyramid Matching

    Get PDF
    This paper describes a novel system for automatic classification of images obtained from Anti-Nuclear Antibody (ANA) pathology tests on Human Epithelial type 2 (HEp-2) cells using the Indirect Immunofluorescence (IIF) protocol. The IIF protocol on HEp-2 cells has been the hallmark method to identify the presence of ANAs, due to its high sensitivity and the large range of antigens that can be detected. However, it suffers from numerous shortcomings, such as being subjective as well as time and labour intensive. Computer Aided Diagnostic (CAD) systems have been developed to address these problems, which automatically classify a HEp-2 cell image into one of its known patterns (eg. speckled, homogeneous). Most of the existing CAD systems use handpicked features to represent a HEp-2 cell image, which may only work in limited scenarios. We propose a novel automatic cell image classification method termed Cell Pyramid Matching (CPM), which is comprised of regional histograms of visual words coupled with the Multiple Kernel Learning framework. We present a study of several variations of generating histograms and show the efficacy of the system on two publicly available datasets: the ICPR HEp-2 cell classification contest dataset and the SNPHEp-2 dataset.Comment: arXiv admin note: substantial text overlap with arXiv:1304.126
    • …
    corecore