337 research outputs found

    How to Place Your Apps in the Fog -- State of the Art and Open Challenges

    Full text link
    Fog computing aims at extending the Cloud towards the IoT so to achieve improved QoS and to empower latency-sensitive and bandwidth-hungry applications. The Fog calls for novel models and algorithms to distribute multi-service applications in such a way that data processing occurs wherever it is best-placed, based on both functional and non-functional requirements. This survey reviews the existing methodologies to solve the application placement problem in the Fog, while pursuing three main objectives. First, it offers a comprehensive overview on the currently employed algorithms, on the availability of open-source prototypes, and on the size of test use cases. Second, it classifies the literature based on the application and Fog infrastructure characteristics that are captured by available models, with a focus on the considered constraints and the optimised metrics. Finally, it identifies some open challenges in application placement in the Fog

    Microservices-based IoT Applications Scheduling in Edge and Fog Computing: A Taxonomy and Future Directions

    Full text link
    Edge and Fog computing paradigms utilise distributed, heterogeneous and resource-constrained devices at the edge of the network for efficient deployment of latency-critical and bandwidth-hungry IoT application services. Moreover, MicroService Architecture (MSA) is increasingly adopted to keep up with the rapid development and deployment needs of the fast-evolving IoT applications. Due to the fine-grained modularity of the microservices along with their independently deployable and scalable nature, MSA exhibits great potential in harnessing both Fog and Cloud resources to meet diverse QoS requirements of the IoT application services, thus giving rise to novel paradigms like Osmotic computing. However, efficient and scalable scheduling algorithms are required to utilise the said characteristics of the MSA while overcoming novel challenges introduced by the architecture. To this end, we present a comprehensive taxonomy of recent literature on microservices-based IoT applications scheduling in Edge and Fog computing environments. Furthermore, we organise multiple taxonomies to capture the main aspects of the scheduling problem, analyse and classify related works, identify research gaps within each category, and discuss future research directions.Comment: 35 pages, 10 figures, submitted to ACM Computing Survey

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Energy-Efficient Virtual Machine Placement using Enhanced Firefly Algorithm

    Get PDF
    The consolidation of the virtual machines (VMs) helps to optimise the usage of resources and hence reduces the energy consumption in a cloud data centre. VM placement plays an important part in the consolidation of the VMs. The researchers have developed various algorithms for VM placement considering the optimised energy consumption. However, these algorithms lack the use of exploitation mechanism efficiently. This paper addresses VM placement issues by proposing two meta-heuristic algorithms namely, the enhanced modified firefly algorithm (MFF) and the hierarchical cluster based modified firefly algorithm (HCMFF), presenting the comparative analysis relating to energy optimisation. The comparisons are made against the existing honeybee (HB) algorithm, honeybee cluster based technique (HCT) and the energy consumption results of all the participating algorithms confirm that the proposed HCMFF is more efficient than the other algorithms. The simulation study shows that HCMFF consumes 12% less energy than honeybee algorithm, 6% less than HCT algorithm and 2% less than original firefly. The usage of the appropriate algorithm can help in efficient usage of energy in cloud computing

    On the Feasibility of Using Current Data Centre Infrastructure for Latency-sensitive Applications

    Get PDF
    IEEE It has been claimed that the deployment of fog and edge computing infrastructure is a necessity to make high-performance cloud-based applications a possibility. However, there are a large number of middle-ground latency-sensitive applications such as online gaming, interactive photo editing and multimedia conferencing that require servers deployed closer to users than in globally centralised clouds but do not necessarily need the extreme low-latency provided by a new infrastructure of micro data centres located at the network edge, e.g. in base stations and ISP Points of Presence. In this paper we analyse a snapshot of today & #x0027;s data centres and the distribution of users around the globe and conclude that existing infrastructure provides a sufficiently distributed platform for middle-ground applications requiring a response time of 20−200  ms20-200\;ms . However, while placement and selection of edge servers for extreme low-latency applications is a relatively straightforward matter of choosing the closest, providing a high quality of experience for middle-ground latency applications that use the more widespread distribution of today & #x0027;s data centres, as we advocate in this paper, raises new management challenges to develop algorithms for optimising the placement of and the per-request selection between replicated service instances
    • …
    corecore