145 research outputs found

    A Low-Power, Reconfigurable, Pipelined ADC with Automatic Adaptation for Implantable Bioimpedance Applications

    Get PDF
    Biomedical monitoring systems that observe various physiological parameters or electrochemical reactions typically cannot expect signals with fixed amplitude or frequency as signal properties can vary greatly even among similar biosignals. Furthermore, advancements in biomedical research have resulted in more elaborate biosignal monitoring schemes which allow the continuous acquisition of important patient information. Conventional ADCs with a fixed resolution and sampling rate are not able to adapt to signals with a wide range of variation. As a result, reconfigurable analog-to-digital converters (ADC) have become increasingly more attractive for implantable biosensor systems. These converters are able to change their operable resolution, sampling rate, or both in order convert changing signals with increased power efficiency. Traditionally, biomedical sensing applications were limited to low frequencies. Therefore, much of the research on ADCs for biomedical applications focused on minimizing power consumption with smaller bias currents resulting in low sampling rates. However, recently bioimpedance monitoring has become more popular because of its healthcare possibilities. Bioimpedance monitoring involves injecting an AC current into a biosample and measuring the corresponding voltage drop. The frequency of the injected current greatly affects the amplitude and phase of the voltage drop as biological tissue is comprised of resistive and capacitive elements. For this reason, a full spectrum of measurements from 100 Hz to 10-100 MHz is required to gain a full understanding of the impedance. For this type of implantable biomedical application, the typical low power, low sampling rate analog-to-digital converter is insufficient. A different optimization of power and performance must be achieved. Since SAR ADC power consumption scales heavily with sampling rate, the converters that sample fast enough to be attractive for bioimpedance monitoring do not have a figure-of-merit that is comparable to the slower converters. Therefore, an auto-adapting, reconfigurable pipelined analog-to-digital converter is proposed. The converter can operate with either 8 or 10 bits of resolution and with a sampling rate of 0.1 or 20 MS/s. Additionally, the resolution and sampling rate are automatically determined by the converter itself based on the input signal. This way, power efficiency is increased for input signals of varying frequency and amplitude

    Design of a wideband low-power continuous-time sigma-delta (ΣΔ) analog-to-digital converter (ADC) in 90nm CMOS technology

    Get PDF
    The growing trend in VLSI systems is to shift more signal processing functionality from analog to digital domain to reduce manufacturing cost and improve reliability. It has resulted in the demand for wideband high-resolution analog-to-digital converters (ADCs). There are many different techniques for doing analog-to-digital conversions. Oversampling ADC based on sigma-delta (ΣΔ) modulation is receiving a lot of attention due to its significantly relaxed matching requirements on analog components. Moreover, it does not need a steep roll-off anti-aliasing filter. A ΣΔ ADC can be implemented either as a discrete time system or a continuous time one. Nowadays growing interest is focused on the continuous-time ΣΔ ADC for its use in the wideband and low-power applications, such as medical imaging, portable ultrasound systems, wireless receivers, and test equipments. A continuous-time ΣΔ ADC offers some important advantages over its discrete-time counterpart, including higher sampling frequency, intrinsic anti-alias filtering, much relaxed sampling network requirements, and low-voltage implementation. Especially it has the potential in achieving low power consumption. This dissertation presents a novel fifth-order continuous-time ΣΔ ADC which is implemented in a 90nm CMOS technology with single 1.0-V power supply. To speed up design process, an improved direct design method is proposed and used to design the loop filter transfer function. To maximize the in-band gain provided by the loop filter, thus maximizing in-band noise suppression, the excess loop delay must be kept minimum. In this design, a very low latency 4-bit flash quantizer with digital-to-analog (DAC) trimming is utilized. DAC trimming technique is used to correct the quantizer offset error, which allows minimum-sized transistors to be used for fast and low-power operation. The modulator has sampling clock of 800MHz. It achieves a dynamic range (DR) of 75dB and a signal-to-noise-and-distortion ratio (SNDR) of 70dB over 25MHz input signal bandwidth with 16.4mW power dissipation. Our work is among the most improved published to date. It uses the lowest supply voltage and has the highest input signal bandwidth while dissipating the lowest power among the bandwidths exceeding 15MHz

    Receiver algorithms that enable multi-mode baseband terminals

    Get PDF

    Channelization for Multi-Standard Software-Defined Radio Base Stations

    Get PDF
    As the number of radio standards increase and spectrum resources come under more pressure, it becomes ever less efficient to reserve bands of spectrum for exclusive use by a single radio standard. Therefore, this work focuses on channelization structures compatible with spectrum sharing among multiple wireless standards and dynamic spectrum allocation in particular. A channelizer extracts independent communication channels from a wideband signal, and is one of the most computationally expensive components in a communications receiver. This work specifically focuses on non-uniform channelizers suitable for multi-standard Software-Defined Radio (SDR) base stations in general and public mobile radio base stations in particular. A comprehensive evaluation of non-uniform channelizers (existing and developed during the course of this work) shows that parallel and recombined variants of the Generalised Discrete Fourier Transform Modulated Filter Bank (GDFT-FB) represent the best trade-off between computational load and flexibility for dynamic spectrum allocation. Nevertheless, for base station applications (with many channels) very high filter orders may be required, making the channelizers difficult to physically implement. To mitigate this problem, multi-stage filtering techniques are applied to the GDFT-FB. It is shown that these multi-stage designs can significantly reduce the filter orders and number of operations required by the GDFT-FB. An alternative approach, applying frequency response masking techniques to the GDFT-FB prototype filter design, leads to even bigger reductions in the number of coefficients, but computational load is only reduced for oversampled configurations and then not as much as for the multi-stage designs. Both techniques render the implementation of GDFT-FB based non-uniform channelizers more practical. Finally, channelization solutions for some real-world spectrum sharing use cases are developed before some final physical implementation issues are considered

    NASA Tech Briefs, December 2008

    Get PDF
    Topics covered include: Crew Activity Analyzer; Distributing Data to Hand-Held Devices in a Wireless Network; Reducing Surface Clutter in Cloud Profiling Radar Data; MODIS Atmospheric Data Handler; Multibeam Altimeter Navigation Update Using Faceted Shape Model; Spaceborne Hybrid-FPGA System for Processing FTIR Data; FPGA Coprocessor for Accelerated Classification of Images; SiC JFET Transistor Circuit Model for Extreme Temperature Range; TDR Using Autocorrelation and Varying-Duration Pulses; Update on Development of SiC Multi-Chip Power Modules; Radio Ranging System for Guidance of Approaching Spacecraft; Electromagnetically Clean Solar Arrays; Improved Short-Circuit Protection for Power Cells in Series; Electromagnetically Clean Solar Arrays; Logic Gates Made of N-Channel JFETs and Epitaxial Resistors; Improved Short-Circuit Protection for Power Cells in Series; Communication Limits Due to Photon-Detector Jitter; System for Removing Pollutants from Incinerator Exhaust; Sealing and External Sterilization of a Sample Container; Converting EOS Data from HDF-EOS to netCDF; HDF-EOS 2 and HDF-EOS 5 Compatibility Library; HDF-EOS Web Server; HDF-EOS 5 Validator; XML DTD and Schemas for HDF-EOS; Converting from XML to HDF-EOS; Simulating Attitudes and Trajectories of Multiple Spacecraft; Specialized Color Function for Display of Signed Data; Delivering Alert Messages to Members of a Work Force; Delivering Images for Mars Rover Science Planning; Oxide Fiber Cathode Materials for Rechargeable Lithium Cells; Electrocatalytic Reduction of Carbon Dioxide to Methane; Heterogeneous Superconducting Low-Noise Sensing Coils; Progress toward Making Epoxy/Carbon-Nanotube Composites; Predicting Properties of Unidirectional-Nanofiber Composites; Deployable Crew Quarters; Nonventing, Regenerable, Lightweight Heat Absorber; Miniature High-Force, Long-Stroke SMA Linear Actuators; "Bootstrap" Configuration for Multistage Pulse-Tube Coolers; Reducing Liquid Loss during Ullage Venting in Microgravity; Ka-Band Transponder for Deep-Space Radio Science; Replication of Space-Shuttle Computers in FPGAs and ASICs; Demisable Reaction-Wheel Assembly; Spatial and Temporal Low-Dimensional Models for Fluid Flow; Advanced Land Imager Assessment System; Range Imaging without Moving Parts

    Analysis and design of ΣΔ Modulators for Radio Frequency Switchmode Power Amplifiers

    Get PDF
    Power amplifiers are an integral part of every basestation, macrocell, microcell and mobile phone, enabling data to be sent over the distances needed to reach the receiver’s antenna. While linear operation is needed for transmitting WCDMA and OFDM signals, linear operation of a power amplifier is characterized by low power efficiency, and contributes to unwanted power dissipation in a transmitter. Recently, a switchmode power amplifier operation was considered for reducing power losses in a RF transmitter. A linear and efficient operation of a PA can be achieved when the transmitted RF signal is ΣΔ modu- lated, and subsequently amplified by a nonlinear device. Although in theory this approach offers linearity and efficiency reaching 100%, the use of ΣΔ modulation for transmitting wideband signals causes problems in practical implementation: it requires high sampling rate by the digital hardware, which is needed for shaping large contents of a quantization noise induced by the modulator but also, the binary output from the modulator needs an RF power amplifier operating over very wide frequency band. This thesis addresses the problem of noise shaping in a ΣΔ modulator and nonlinear distortion caused by broadband operation in switchmode power amplifier driven by a ΣΔ modulated waveform. The problem of sampling rate increase in a ΣΔ modulator is solved by optimizing structure of the modulator, and subsequent processing of an input signal’s samples in parallel. Independent from the above, a novel technique for reducing quan- tization noise in a bandpass ΣΔ modulator using single bit quantizer is presented. The technique combines error pulse shaping and 3-level quantization for improving signal to noise ratio in a 2-level output. The improvement is achieved without the increase of a digital hardware’s sampling rate, which is advantageous also from the perspective of power consumption. The new method is explored in the course of analysis, and verified by simulated and experimental results. The process of RF signal conversion from the Cartesian to polar form is analyzed, and a signal modulator for a polar transmitter with a ΣΔ-digitized envelope signal is designed and implemented. The new modulator takes an advantage of bandpass digital to analog conversion for simplifying the analog part of the modulator. A deformation of the pulsed RF signal in the experimental modulator is demonstrated to have an effect primarily on amplitude of the RF signal, which is correctable with simple predistortion

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book
    • …
    corecore