685 research outputs found

    Energy-Efficient Softwarized Networks: A Survey

    Full text link
    With the dynamic demands and stringent requirements of various applications, networks need to be high-performance, scalable, and adaptive to changes. Researchers and industries view network softwarization as the best enabler for the evolution of networking to tackle current and prospective challenges. Network softwarization must provide programmability and flexibility to network infrastructures and allow agile management, along with higher control for operators. While satisfying the demands and requirements of network services, energy cannot be overlooked, considering the effects on the sustainability of the environment and business. This paper discusses energy efficiency in modern and future networks with three network softwarization technologies: SDN, NFV, and NS, introduced in an energy-oriented context. With that framework in mind, we review the literature based on network scenarios, control/MANO layers, and energy-efficiency strategies. Following that, we compare the references regarding approach, evaluation method, criterion, and metric attributes to demonstrate the state-of-the-art. Last, we analyze the classified literature, summarize lessons learned, and present ten essential concerns to open discussions about future research opportunities on energy-efficient softwarized networks.Comment: Accepted draft for publication in TNSM with minor updates and editin

    Issues and Challenges for Network Virtualisation

    Get PDF
    In recent years, network virtualisation has been of great interest to researchers, being a relatively new and major paradigm in networking. This has been reflected in the IT industry where many virtualisation solutions are being marketed as revolutionary and purchased by enterprises to exploit these promised performances. Adversely, there are certain drawbacks like security, isolation and others that have conceded the network virtualisation. In this study, an investigation of the different state-of-the-art virtualisation technologies, their issues and challenges are addressed and besides, a guideline for a quintessential Network Virtualisation Environment (NVE) is been proposed. A systematic review was effectuated on selectively picked research papers and technical reports. Moreover a comparative study is performed on different Network Virtualisation technologies which include features like security, isolation, stability, convergence, outlay, scalability, robustness, manageability, resource management, programmability, flexibility, heterogeneity, legacy Support, and ease of deployment. The virtualisation technologies comprise Virtual Private Network (VPN), Virtual Local Area Network (VLAN), Virtual Extensible Local Area Network (VXLAN), Software Defined Networking (SDN) and Network Function Virtualisation (NFV). Conclusively the results exhibited the disparity as to the gaps of creating an ideal network virtualisation model which can be circumvented using these as a benchmark

    Online Virtual Network Provisioning in Distributed Cloud Computing Data Centers

    Get PDF
    Efficient virtualization methodologies constitute the core of cloud computing data center implementation. Clients are attracted to the cloud model by the ability to scale available resources dynamically and the flexibility in payment options. However, performance hiccups can push them to return to the buy-and-maintain model. Virtualization plays a key role in the synchronous management of the thousands of servers along with clients\u27 data residing on them. To achieve seamless virtualization, cloud providers require a system that performs the function of virtual network mapping. This includes receiving the cloud client requests and allocating computational and network resources in a way that guarantees the quality of service conditions for clients while maximizing the data center resource utilization and providers\u27 revenue. In this thesis, we introduce a comprehensive system to solve the problem of virtual network mapping for a set of connection requests sent by cloud clients. Connections are collected in time intervals called windows. Subsequently, node mapping and link mapping are performed. Different window size selection schemes are introduced and evaluated. Three schemes to prioritize connections are used and their effect is assessed. Moreover, a technique dealing with connections spanning over more than a window is introduced. Simulation results show that the dynamic window size algorithm achieves cloud service providers objectives in terms of generated revenue, served connections ratio, resource utilization and computational overhead. In addition, experimental results show that handling spanning connections independently improves the results for the performance metrics measured. Moreover, in a cloud infrastructure, handling all resources efficiently in their usage, management and energy consumption is challenging. We propose an energy efficient technique for embedding online virtual network requests in cloud data centers. The core focus of this study is to manage energy efficiently in cloud environment. A fixed windowing technique with spanning connections is used. Our algorithm, and a technique for randomly embedding nodes and links are also explained. The results clearly show that the algorithm used in this study generated better results in terms of energy consumption, served connections and revenue generation

    FLA-SLA aware cloud collation formation using fuzzy preference relationship multi-decision approach for federated cloud

    Get PDF
    Cloud Computing provides a solution to enterprise applications in resolving their services at all level of Software, Platform, and Infrastructure. The current demand of resources for large enterprises and their specific requirement to solve critical issues of services to their clients like avoiding resources contention, vendor lock-in problems and achieving high QoS (Quality of Service) made them move towards the federated cloud. The reliability of the cloud has become a challenge for cloud providers to provide resources at an instance request satisfying all SLA (Service Level Agreement) requirements for different consumer applications. To have better collation among cloud providers, FLA (Federated Level Agreement) are given much importance to get consensus in terms of various KPI’s (Key Performance Indicator’s) of the individual cloud providers. This paper proposes an FLA-SLA Aware Cloud Collation Formation algorithm (FS-ACCF) considering both FLA and SLA as major features affecting the collation formation to satisfy consumer request instantly. In FS-ACCF algorithm, fuzzy preference relationship multi-decision approach was used to validate the preferences among cloud providers for forming collation and gaining maximum profit. Finally, the results of FS-ACCF were compared with S-ACCF (SLA Aware Collation Formation) algorithm for 6 to 10 consecutive requests of cloud consumers with varied VM configurations for different SLA parameters like response time, process time and availability
    corecore