3,002 research outputs found

    SEPIA: Security through Private Information Aggregation

    Full text link
    Secure multiparty computation (MPC) allows joint privacy-preserving computations on data of multiple parties. Although MPC has been studied substantially, building solutions that are practical in terms of computation and communication cost is still a major challenge. In this paper, we investigate the practical usefulness of MPC for multi-domain network security and monitoring. We first optimize MPC comparison operations for processing high volume data in near real-time. We then design privacy-preserving protocols for event correlation and aggregation of network traffic statistics, such as addition of volume metrics, computation of feature entropy, and distinct item count. Optimizing performance of parallel invocations, we implement our protocols along with a complete set of basic operations in a library called SEPIA. We evaluate the running time and bandwidth requirements of our protocols in realistic settings on a local cluster as well as on PlanetLab and show that they work in near real-time for up to 140 input providers and 9 computation nodes. Compared to implementations using existing general-purpose MPC frameworks, our protocols are significantly faster, requiring, for example, 3 minutes for a task that takes 2 days with general-purpose frameworks. This improvement paves the way for new applications of MPC in the area of networking. Finally, we run SEPIA's protocols on real traffic traces of 17 networks and show how they provide new possibilities for distributed troubleshooting and early anomaly detection

    A Survey on the Security of Pervasive Online Social Networks (POSNs)

    Full text link
    Pervasive Online Social Networks (POSNs) are the extensions of Online Social Networks (OSNs) which facilitate connectivity irrespective of the domain and properties of users. POSNs have been accumulated with the convergence of a plethora of social networking platforms with a motivation of bridging their gap. Over the last decade, OSNs have visually perceived an altogether tremendous amount of advancement in terms of the number of users as well as technology enablers. A single OSN is the property of an organization, which ascertains smooth functioning of its accommodations for providing a quality experience to their users. However, with POSNs, multiple OSNs have coalesced through communities, circles, or only properties, which make service-provisioning tedious and arduous to sustain. Especially, challenges become rigorous when the focus is on the security perspective of cross-platform OSNs, which are an integral part of POSNs. Thus, it is of utmost paramountcy to highlight such a requirement and understand the current situation while discussing the available state-of-the-art. With the modernization of OSNs and convergence towards POSNs, it is compulsory to understand the impact and reach of current solutions for enhancing the security of users as well as associated services. This survey understands this requisite and fixates on different sets of studies presented over the last few years and surveys them for their applicability to POSNs...Comment: 39 Pages, 10 Figure

    Privacy-Preserving DDoS Attack Detection Using Cross-Domain Traffic in Software Defined Networks

    Full text link
    Existing distributed denial-of-service attack detection in software defined networks (SDNs) typically perform detection in a single domain. In reality, abnormal traffic usually affects multiple network domains. Thus, a cross-domain attack detection has been proposed to improve detection performance. However, when participating in detection, the domain of each SDN needs to provide a large amount of real traffic data, from which private information may be leaked. Existing multiparty privacy protection schemes often achieve privacy guarantees by sacrificing accuracy or increasing the time cost. Achieving both high accuracy and reasonable time consumption is a challenging task. In this paper, we propose Predis, which is a privacypreserving cross-domain attack detection scheme for SDNs. Predis combines perturbation encryption and data encryption to protect privacy and employs a computationally simple and efficient algorithm k-Nearest Neighbors (kNN) as its detection algorithm. We also improve kNN to achieve better efficiency. Via theoretical analysis and extensive simulations, we demonstrate that Predis is capable of achieving efficient and accurate attack detection while securing sensitive information of each domain

    Evaluating and Improving Adversarial Robustness of Machine Learning-Based Network Intrusion Detectors

    Full text link
    Machine learning (ML), especially deep learning (DL) techniques have been increasingly used in anomaly-based network intrusion detection systems (NIDS). However, ML/DL has shown to be extremely vulnerable to adversarial attacks, especially in such security-sensitive systems. Many adversarial attacks have been proposed to evaluate the robustness of ML-based NIDSs. Unfortunately, existing attacks mostly focused on feature-space and/or white-box attacks, which make impractical assumptions in real-world scenarios, leaving the study on practical gray/black-box attacks largely unexplored. To bridge this gap, we conduct the first systematic study of the gray/black-box traffic-space adversarial attacks to evaluate the robustness of ML-based NIDSs. Our work outperforms previous ones in the following aspects: (i) practical-the proposed attack can automatically mutate original traffic with extremely limited knowledge and affordable overhead while preserving its functionality; (ii) generic-the proposed attack is effective for evaluating the robustness of various NIDSs using diverse ML/DL models and non-payload-based features; (iii) explainable-we propose an explanation method for the fragile robustness of ML-based NIDSs. Based on this, we also propose a defense scheme against adversarial attacks to improve system robustness. We extensively evaluate the robustness of various NIDSs using diverse feature sets and ML/DL models. Experimental results show our attack is effective (e.g., >97% evasion rate in half cases for Kitsune, a state-of-the-art NIDS) with affordable execution cost and the proposed defense method can effectively mitigate such attacks (evasion rate is reduced by >50% in most cases).Comment: This article has been accepted for publication by IEEE JSA

    Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges

    Full text link
    The widespread popularity of smart meters enables an immense amount of fine-grained electricity consumption data to be collected. Meanwhile, the deregulation of the power industry, particularly on the delivery side, has continuously been moving forward worldwide. How to employ massive smart meter data to promote and enhance the efficiency and sustainability of the power grid is a pressing issue. To date, substantial works have been conducted on smart meter data analytics. To provide a comprehensive overview of the current research and to identify challenges for future research, this paper conducts an application-oriented review of smart meter data analytics. Following the three stages of analytics, namely, descriptive, predictive and prescriptive analytics, we identify the key application areas as load analysis, load forecasting, and load management. We also review the techniques and methodologies adopted or developed to address each application. In addition, we also discuss some research trends, such as big data issues, novel machine learning technologies, new business models, the transition of energy systems, and data privacy and security.Comment: IEEE Transactions on Smart Grid, 201

    Mitigating Data Exfiltration in Storage-as-a-Service Clouds

    Full text link
    Existing processes and methods for incident handling are geared towards infrastructures and operational models that will be increasingly outdated by cloud computing. Research has shown that to adapt incident handling to cloud computing environments, cloud customers must establish clarity about their requirements on Cloud Service Providers (CSPs) for successful handling of incidents and contract CSPs accordingly. Secondly, CSPs must strive to support these requirements and mirror them in their Service Level Agreements. Intrusion Detection Systems (IDS) have been used widely to detect malicious behaviors in network communication and hosts. Facing new application scenarios in Cloud Computing, the IDS approaches yield several problems since the operator of the IDS should be the user, not the administrator of the Cloud infrastructure. Cloud providers need to enable possibilities to deploy and configure IDS for the user - which poses its own challenges. Current research and commercial solutions primarily focus on protecting against Denial of Service attacks and attacks against the Cloud's virtual infrastructure. To counter these challenges, we propose a capability that aims to both detect and prevent the potential of data exfiltration by using a novel deception-based methodology. We also introduce a method of increasing the data protection level based on various threat conditions

    A Survey on Software-Defined VANETs: Benefits, Challenges, and Future Directions

    Full text link
    The evolving of Fifth Generation (5G) networks isbecoming more readily available as a major driver of the growthof new applications and business models. Vehicular Ad hocNetworks (VANETs) and Software Defined Networking (SDN)represent the key enablers of 5G technology with the developmentof next generation intelligent vehicular networks and applica-tions. In recent years, researchers have focused on the integrationof SDN and VANET, and look at different topics related to thearchitecture, the benefits of software-defined VANET servicesand the new functionalities to adapt them. However, securityand robustness of the complete architecture is still questionableand have been largely negleted. Moreover, the deployment andintegration of novel entities and several architectural componentsdrive new security threats and vulnerabilities.In this paper, first we survey the state-of-the-art SDN basedVehicular ad-hoc Network (SDVN) architectures for their net-working infrastructure design, functionalities, benefits, and chal-lenges. Then we discuss these SDVN architectures against majorsecurity threats that violate the key security services such asavailability, confidentiality, authentication, and data integrity.We also propose different countermeasures to these threats.Finally, we discuss the lessons learned with the directions offuture research work towards provisioning stringent security andprivacy solutions in future SDVN architectures. To the best of ourknowledge, this is the first comprehensive work that presents sucha survey and analysis on SDVNs in the era of future generationnetworks (e.g., 5G, and Information centric networking) andapplications (e.g., intelligent transportation system, and IoT-enabled advertising in VANETs).Comment: 17 pages, 2 figure

    Exploratory study to explore the role of ICT in the process of knowledge management in an Indian business environment

    Get PDF
    In the 21st century and the emergence of a digital economy, knowledge and the knowledge base economy are rapidly growing. To effectively be able to understand the processes involved in the creating, managing and sharing of knowledge management in the business environment is critical to the success of an organization. This study builds on the previous research of the authors on the enablers of knowledge management by identifying the relationship between the enablers of knowledge management and the role played by information communication technologies (ICT) and ICT infrastructure in a business setting. This paper provides the findings of a survey collected from the four major Indian cities (Chennai, Coimbatore, Madurai and Villupuram) regarding their views and opinions about the enablers of knowledge management in business setting. A total of 80 organizations participated in the study with 100 participants in each city. The results show that ICT and ICT infrastructure can play a critical role in the creating, managing and sharing of knowledge in an Indian business environment

    Deep Learning in Information Security

    Full text link
    Machine learning has a long tradition of helping to solve complex information security problems that are difficult to solve manually. Machine learning techniques learn models from data representations to solve a task. These data representations are hand-crafted by domain experts. Deep Learning is a sub-field of machine learning, which uses models that are composed of multiple layers. Consequently, representations that are used to solve a task are learned from the data instead of being manually designed. In this survey, we study the use of DL techniques within the domain of information security. We systematically reviewed 77 papers and presented them from a data-centric perspective. This data-centric perspective reflects one of the most crucial advantages of DL techniques -- domain independence. If DL-methods succeed to solve problems on a data type in one domain, they most likely will also succeed on similar data from another domain. Other advantages of DL methods are unrivaled scalability and efficiency, both regarding the number of examples that can be analyzed as well as with respect of dimensionality of the input data. DL methods generally are capable of achieving high-performance and generalize well. However, information security is a domain with unique requirements and challenges. Based on an analysis of our reviewed papers, we point out shortcomings of DL-methods to those requirements and discuss further research opportunities

    Data Leak Detection As a Service: Challenges and Solutions

    Get PDF
    We describe a network-based data-leak detection (DLD) technique, the main feature of which is that the detection does not require the data owner to reveal the content of the sensitive data. Instead, only a small amount of specialized digests are needed. Our technique – referred to as the fuzzy fingerprint – can be used to detect accidental data leaks due to human errors or application flaws. The privacy-preserving feature of our algorithms minimizes the exposure of sensitive data and enables the data owner to safely delegate the detection to others.We describe how cloud providers can offer their customers data-leak detection as an add-on service with strong privacy guarantees. We perform extensive experimental evaluation on the privacy, efficiency, accuracy and noise tolerance of our techniques. Our evaluation results under various data-leak scenarios and setups show that our method can support accurate detection with very small number of false alarms, even when the presentation of the data has been transformed. It also indicates that the detection accuracy does not degrade when partial digests are used. We further provide a quantifiable method to measure the privacy guarantee offered by our fuzzy fingerprint framework
    • …
    corecore